Skip to main content
Log in

EPR Study of Photoexcited Charge Carrier Behavior in TiO2/MoO3 and TiO2/MoO3:V2O5 Photocatalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Metal oxide photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 have been investigated by electron paramagnetic resonance (EPR) spectroscopy under in situ light excitation. Structural identification of all paramagnetic centers (PCs) recorded, such as surface and lattice Ti3+ ions as well as Mo5+ and V4+ ions and nitrogen 14N atoms containing the unpaired electron (“N-radicals”), have been performed. The temperature behavior of PCs in the range of 30–300 K and photoinduced changes of EPR spectra under light irradiation have been investigated. The validity of the Curie law was confirmed for the PCs of such composite photocatalysts. A new original method of detection of charge carrier separation and accumulation is suggested using EPR-technique. It is shown that TiO2/MoO3 and TiO2/MoO3:V2O5 photocatalysts are capable to accumulate photogenerated charge providing fresh possibilities for practical applications in photocatalysis because these oxide heterostructures retaining oxidation activity for a long time (more than 5 h) under the dark conditions after illumination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Catana G, Rao RR, Weckhuysen BM, Van Der Voort P, Vansant E, Schoonheydt RA (1998) J Phys Chem B 102:8005–8012

    Article  CAS  Google Scholar 

  2. Nova I, Lietti L, Casagrande L, Dall’Acqua L, Giamello E, Forzatti P (1998) Appl Catal B 17:245–258

    Article  CAS  Google Scholar 

  3. Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F (1999) J Catal 187:419–435

    Article  CAS  Google Scholar 

  4. Dall’Acqua L, Nova I, Lietti L, Ramis G, Busca G, Giamello E (2000) Phys Chem Chem Phys 2:4991–4998

    Article  Google Scholar 

  5. Yamamoto S, Yao S, Kodama S, Mine C, Fujioka Y (2008) Open Catal J 1:11–16

    Article  CAS  Google Scholar 

  6. Refaat AA (2011) Int J Environ Sci Tech 8:203–221

    Article  CAS  Google Scholar 

  7. Vernardou D, Sapountzis A, Spanakis E, Kenanakis G, Koudoumas E, Katsarakis N (2013) J Electrochem Soc 160:D6–D9

    Article  CAS  Google Scholar 

  8. Mendoza-Sánchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Grant PS (2013) Electrochem Acta 91:253–260

    Article  CAS  Google Scholar 

  9. Sviridova TV, Antonova AA, Boikov EV, Vishnetskaya MV, Sviridov DV, Kokorin AI (2013) Russ J Phys Chem B 7:118–122

    Article  CAS  Google Scholar 

  10. Vakhrushin PA, Vishnetskaya MV, Kokorin AI (2012) Russ J Phys Chem B 6:169–172

    Article  CAS  Google Scholar 

  11. Boikov EV, Vakhrushin PA, Vishnetskaya MV (2008) Khim Tekhnol Fuels Oils 4:44–46

    Google Scholar 

  12. Boikov EV, Sviridova TV, Vishnetskaya MV, Sviridov DV, Kokorin AI (2013) Russ J Phys Chem B 7:251–254

    Article  CAS  Google Scholar 

  13. Martin ST, Morrison CL, Hoffmann MR (1994) J Phys Chem 98:13695–13704

    Article  CAS  Google Scholar 

  14. Khan MM, Adil SF, Al-Mayouf A (2015) J Saudi Chem Soc 19:462–464

    Article  Google Scholar 

  15. Sudha D, Sivakumar P (2015) Chem Eng Proc Proc Intensif 97:112–133

    Article  CAS  Google Scholar 

  16. Wenderich K, Mul G (2016) Chem Rev 116:14587–14619

    Article  CAS  PubMed  Google Scholar 

  17. Boyjoo Y, Sun H, Vishnu JL, Pareek K, Wang S (2017) Chem Eng J 310:537–559

    Article  CAS  Google Scholar 

  18. Zhang J, Xiao G, Xiao FX, Liu B (2017) Mater Chem Front 1:231–250

    Article  CAS  Google Scholar 

  19. Kokorin AI, Amal R, Teoh WY, Kulak AI (2017) Appl Magn Reson 48:447–459

    Article  CAS  Google Scholar 

  20. Dunnill CW, Parkin IP (2012) In: Lerouge S, Simmons A (eds) Sterilisation of biomaterials and medical devices. Woodhead Publishing, Sawston, pp 240–260

    Chapter  Google Scholar 

  21. Liu D, Zi W, Sajjad SD, Hsu C, Shen Y, Wei M, Liu F (2015) ACS Catal 5:2632–2639

    Article  CAS  Google Scholar 

  22. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A (2002) Langmuir 18:7777–7779

    Article  CAS  Google Scholar 

  23. Ngaotrakanwiwat P, Saitoh S, Ohko Y, Tatsuma T, Fujishima A (2003) J Electrochem Soc 150:A1405–A1407

    Article  CAS  Google Scholar 

  24. Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A (2003) Electrochem Comm 5:793–796

    Article  CAS  Google Scholar 

  25. Takahashi Y, Tatsuma T (2008) Electrochem Comm 10:1404–1407

    Article  CAS  Google Scholar 

  26. Naumova OV, Frantzusov AA, Nikolaev DV, Popov VP (2005) Electrochem Soc Proc 2005–03:255–260

    Google Scholar 

  27. Yang F, Takahashi Y, Sakai N, Tatsuma T (2011) J Mater Chem 21:2288–2293

    Article  CAS  Google Scholar 

  28. Sviridova TV, Sadovskaya LY, Kokorin AI, Konstantinova EA, Agabekov VE, Sviridov DV (2017) Russ J Phys Chem B 11:348–353

    Article  CAS  Google Scholar 

  29. Sviridova TV, Kokorin AI, Sviridov DV (2013) Russ J Phys Chem B 7:734–738

    Article  CAS  Google Scholar 

  30. Sviridova TV, Antonova AA, Kokorin AI, Degtyarev EN, Sviridov DV (2015) Russ J Phys Chem B 9:22–28

    Article  CAS  Google Scholar 

  31. Sviridova TV, Kokorin AI, Antonova AA, Sviridov DV (2015) Russ J Phys Chem B 9:36–42

    Article  CAS  Google Scholar 

  32. Sviridova TV, Sadovskaya LY, Kokorin AI, Lapchuk NM, Sviridov DV (2016) Russ J Phys Chem B 10:561–565

    Article  CAS  Google Scholar 

  33. Sviridova TV, Stepanova LI, Sviridov DV (2012) In: Ortiz M, Herrera TNY (eds) Molybdenum: characteristics, production and applications. Nova Science, New York, pp 147–179

    Google Scholar 

  34. Baraboshina AA, Sviridova TV, Kokorin AI, Kovarsky AL, Sviridov DV (2016) Russ J Phys Chem B 10:28–33

    Article  CAS  Google Scholar 

  35. Zazhigalov VA, Khalameida SV, Litvin NS, Bacherikova IV, Stoch J, Depero L (2008) Kinet Catal 49:692–701

    Article  CAS  Google Scholar 

  36. Kolbanev IV, Degtyarev EN, Streletskii AN, Kokorin AI (2016) Appl Magn Reson 47:575–588

    Article  CAS  Google Scholar 

  37. Kokorin AI, Sviridova TV, Kolbanev IV, Sadovskaya LY, Degtyarev EN, Vorobyeva GA, Streletskii AN, Sviridov DV (2018) Russ J Phys Chem B 12:330–335

    Article  CAS  Google Scholar 

  38. Wachs IE (1996) Catal Today 27:437–455

    Article  CAS  Google Scholar 

  39. Tomskii IS, Vishnetskaya MV, Kokorin AI (2008) Russ J Phys Chem B 2:562–567

    Google Scholar 

  40. Lee KW, Lee EM, Kweon H, Park J, Lee CE (2006) J Korean Phys Soc 49:1625–1629

    CAS  Google Scholar 

  41. Dinse A, Ozarowski A, Hess C, Schomäcker R, Dinse KP (2008) J Phys Chem C 112:17664–17671

    Article  CAS  Google Scholar 

  42. Kokorin AI, Sukhanov AA, Gromov OI, Arakelyan VM, Aroutiounian VM, Voronkova VK (2016) Appl Magn Reson 47:479–485

    Article  CAS  Google Scholar 

  43. Pližingrová E, Klementová M, Bezdička P, Boháček J, Barbieriková Z, Dvoranová D, Mazúr M, Krýsa J, Šubrt J, Brezová V (2017) Catal Today 281:165–180

    Article  CAS  Google Scholar 

  44. Barbierikova Z, Pližingrova E, Motlochova M, Bezdička P, Bohaček J, Dvoranova D, Mažur M, Kupčik J, Jirkovsky J, Subrt J, Krysa J, Brezova V (2018) Appl Catal B 232:397–408

    Article  CAS  Google Scholar 

  45. Livraghi S, Chiesa M, Paganini MC, Giamello E (2011) J Phys Chem C 115:25413–25421

    Article  CAS  Google Scholar 

  46. Chiesa M, Paganini MC, Livraghi S, Giamello E (2013) Phys Chem Chem Phys 15:9435–9447

    Article  CAS  PubMed  Google Scholar 

  47. Livraghi S, Rolando M, Maurelli S, Chiesa M, Paganini MC, Giamello E (2014) J Phys Chem C 118:22141–22148

    Article  CAS  Google Scholar 

  48. Panarelli EG, Livraghi S, Maurelli S, Polliotto V, Chiesa M, Giamello E (2016) J Photochem Photobiol A 322–323:27–34

    Article  CAS  Google Scholar 

  49. Konstantinova EA, Minnekhanov AA, Kokorin AI, Sviridova TV, Sviridov DV (2018) J Phys Chem C 122:10248–10254

    Article  CAS  Google Scholar 

  50. Skorb EV, Ustinovich EA, Kulak AI, Sviridov DV (2008) J Photochem Photobiol A 193:97–102

    Article  CAS  Google Scholar 

  51. Sviridova TV, Sadovskaya LY, Shchukina EM, Logvinovich AS, Shchukin DG, Sviridov DV (2016) J Photochem Photobiol A 327:44–50

    Article  CAS  Google Scholar 

  52. Tada H, Tanaka M (1997) Langmuir 13:360–364

    Article  CAS  Google Scholar 

  53. Wedland W, Hecht H (1966) Reflectance spectroscopy. Interscience, New York

    Google Scholar 

  54. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  PubMed  Google Scholar 

  55. Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt JD, Baiker A (2004) Chem Mater 16:1126–1134

    Article  CAS  Google Scholar 

  56. Gerand B, Seguin L (1996) Solid State Ionics 84:199–204

    Article  CAS  Google Scholar 

  57. Jolivet J-P, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. John Wiley, Chichester

    Google Scholar 

  58. Takahashi Y, Ngaotrakanwiwat P, Tatsuma T (2004) Electrochim Acta 49:2025–2029

    Article  CAS  Google Scholar 

  59. Kuska HA, Rogers MT (1968) ESR of first row transition metal complex ions. Interscience, New York

    Google Scholar 

  60. Al’tshuler SA, Kozyrev BM (1972) Electron paramagnetic resonance of the compounds of intermediate groups. Nauka, Moscow

    Google Scholar 

  61. Kokorin AI (2003) In: Kokorin AI, Bahnemann DW (eds) Chemical physics of nanostructured semicontuctors. VSP–Brill Academic Publishers, Utrecht, pp 203–263

    Chapter  Google Scholar 

  62. Di Valentin C, Pacchionni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414–11419

    Article  CAS  PubMed  Google Scholar 

  63. Varlec A, Arcon D, Skapin SD, Remskar M (2016) Mater Chem Phys 170:154–161

    Article  CAS  Google Scholar 

  64. Streletsky AN, Sivak MV, Dolgoborodov AYu (2017) J Mater Sci 52:11810–11825

    Article  CAS  Google Scholar 

  65. Centi G, Giamello E, Pinelli D, Trifiro F (1991) J Catal 130:220–237

    Article  CAS  Google Scholar 

  66. Vedrine JC, Praliaud H, Mériaudeau P, Che M (1979) Surf Sci 80:101–109

    Article  CAS  Google Scholar 

  67. Davidson A, Che M (1992) J Phys Chem 96:9909–9915

    Article  CAS  Google Scholar 

  68. Vanhaelst M, Clauws P (1978) Phys Stat Sol (b) 87:719–723

    Article  CAS  Google Scholar 

  69. Kokorin AI, Kulak AI, Tomskii IS, Rufov YuN (2013) Russ J Phys Chem B 13:255–261

    Article  CAS  Google Scholar 

  70. Molin YN, Salikhov KM, Zamaraev KI (1980) Spin Exchange. Springer, Berlin

    Book  Google Scholar 

  71. Kittel C (2003) Introduction to Solid State Physics, 8th edn. Springer, New York

    Google Scholar 

  72. Vonsovsky SV (1971) Magnetism. Nauka, Moscow

    Google Scholar 

Download references

Acknowledgements

The experiments were performed using the facilities of the Collective Use Center at the Moscow State University. This study was supported in part by the Russian Foundation for Basic Research (Grant No. 18-53-00020-Bel-a) and Belarus Republic Fund for Basic Research (Grant No. Kh17-066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta A. Konstantinova.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.A., Kokorin, A.I., Minnekhanov, A.A. et al. EPR Study of Photoexcited Charge Carrier Behavior in TiO2/MoO3 and TiO2/MoO3:V2O5 Photocatalysts. Catal Lett 149, 2256–2267 (2019). https://doi.org/10.1007/s10562-019-02830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02830-7

Keywords

Navigation