Skip to main content
Log in

EPR Study of TiO2 (Rutile) Doped with Vanadium

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Samples of titanium dioxide, TiO2, doped with vanadium ions (0.1 ≤ [Vn+]0 ≤ 5.0 at. %) at high temperature, were prepared in a polycrystalline state and investigated using X-, Q-, and W-band electron paramagnetic resonance, EPR, spectroscopy. Substitutional and interstitial V4+ centers in TiO2 lattice have been both observed in EPR spectra, and their spin-Hamiltonian parameters were calculated. Portions of paramagnetic and diamagnetic species of Vn+ ions were estimated. The effect of additional high temperature annealing on the valence state of vanadium centers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Serpone, E. Pelizzetti (eds.), Photocatalysis: Fundamentals and Applications (John Wiley & Sons, New York, 1989)

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  3. D.F. Ollis, H. Al-Ekabi (eds.), Photocatalytic Purification and Treatment of Water and Air (Elsevier, Amsterdam, 1993)

  4. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C, Photochem. Rev. 1, 1–21 (2000)

  5. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  6. P.G. Wu, R.A. Xie, K. Lay, J. Kushang, Environ. Sci. Technol. 44, 6992 (2010)

    Article  ADS  Google Scholar 

  7. M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Appl. Catalysis A, General 325, 1 (2007)

  8. W.-K. Jo, J. Kim, Environ. Eng. Res. 13(4), 171 (2008)

    Article  Google Scholar 

  9. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Daib, M.-H. Whangbo, J. Mater. Chem. 21, 9079 (2011)

    Article  Google Scholar 

  10. S.O. Obare, G.J. Meyer, J. Environ, Sci. & Health A39, 2549 (2004)

    Google Scholar 

  11. T.K. Ghorai, Open. J. Phys. Chem. 1, 28 (2011)

    Google Scholar 

  12. H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009)

    Article  Google Scholar 

  13. M. Graetzel (ed.), Energy Resources through Photochemistry and Catalysis (Academic Press, New York, 1983)

  14. M. Schiavello (ed.), Photoelectrochemistry. Photocatalysis and Photoreactors (Reidel Publ. Co., Dordrecht, 1985)

  15. E. Pelizzetti, M. Schiavello (eds.), Photochemical Conversion and Storage of Solar Energy (Kluwer, Dordrecht, 1991)

  16. Yu.V. Pleskov, Photoelectrochemical Conversion of Solar Energy (Nauka, Moscow, 1990)

    Book  Google Scholar 

  17. I.E. Wachs, R.Y. Saleh, S.S. Chan, C. Chersich, Appl. Catal. 15, 339 91985)

  18. G. Centi, E. Giamello, D. Pinelli, F. Trifiro, J. Catal. 130, 220 (1991)

    Article  Google Scholar 

  19. O.V. Krylov, Heterogeneous Catalysis, (IKC “Akademkniga”, Moscow, 2004)

  20. A.K. Ghosh, H.P. Maruska, J. Electrochem. Soc. 124, 1516 (1977)

    Article  Google Scholar 

  21. T.E. Phillips, K. Moorjani, J.C. Murphy, T.O. Poehler, J. Electrochem. Soc. 129, 1210 (1982)

    Article  Google Scholar 

  22. P. Salvador, Solar Energy Materials 2, 413 (1980)

    Article  ADS  Google Scholar 

  23. Y. Matsumoto, J. Kurimoto, T. Shimizu, E. Sato, J. Electrochem. Soc. 128, 1040 (1981)

    Article  Google Scholar 

  24. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Sol. Energy Mater. Sol. Cell. 89, 153 (2005)

    Article  Google Scholar 

  25. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Sol. Energy 78, 581 (2005)

    Article  ADS  Google Scholar 

  26. A.I. Kokorin, V.M. Arakelyan, V.M. Arutyunyan, Russ. Chem. Bull., Inter. Ed. 52, 93 (2003)

  27. A. Davidson, M. Che, J. Phys. Chem. 96, 9909 (1992)

    Article  Google Scholar 

  28. R. Gallay, J.J. van der Klink, J. Moser, Phys. Rev. 34B, 3060 (1986)

    Article  ADS  Google Scholar 

  29. H.J. Gerritsen, H.R. Lewis, Phys. Rev. 119, 1010 (1960)

    Article  ADS  Google Scholar 

  30. G.M. Zverev, A.M. Prokhorov, Zh Exper, Teor. Fiz. 39, 222 (1960)

    Google Scholar 

  31. F. Kubec, Z. Sroubek, J. Chem. Phys. 57, 1660 (1972)

    Article  ADS  Google Scholar 

  32. F.M. Michel-Calendini, G. Fichelle, Phys. Stat. Sol. B 69, 607 (1975)

    Article  ADS  Google Scholar 

  33. S.T. Martin, C.L. Morrison, M.R. Hoffmann, J. Phys. Chem. 98, 13695 (1994)

    Article  Google Scholar 

  34. A.I. Kokorin, in: Chemical Physics of Nanostructured Semiconductors, eds. A.I. Kokorin, D.W. Bahnemann (VSP–Brill Academic Publishers, Utrecht, Boston, 2003), p. 203

Download references

Acknowledgments

This work is supported in part by the Russian Foundation for Basic Research (project no. 14-03-90020_Bel-a). We are grateful to Prof. A. Kh. Vorob’ev (Department of Chemistry, M. V. Lomonosov Moscow State University) for kindly providing us with his program package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kokorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokorin, A.I., Sukhanov, A.A., Gromov, O.I. et al. EPR Study of TiO2 (Rutile) Doped with Vanadium. Appl Magn Reson 47, 479–485 (2016). https://doi.org/10.1007/s00723-016-0762-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0762-z

Keywords

Navigation