Skip to main content

Advertisement

Log in

On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

(Co, Ni) bimetallic nanoparticles have been prepared by reducing Ni and Co chloride solutions with sodium borohydride. The obtained materials have been characterized as cast and/or after annealing by means of XRD, magnetic measurements, IR spectroscopy, FE-SEM and TEM microscopies. The resulting nanomaterials, originally amorphous, crystallize into the cubic structure cF4-Cu as homogeneous (Co, Ni) solid solution alloy and with the additional presence of Boron containing phases due to the residual preparation impurities. The bimetallic nanoparticles are active in ethanol conversion in the presence of steam. For low Boron catalysts, the addition of Nickel to Cobalt nanoparticles improves the catalytic activity in ethanol steam reforming allowing yields as high as 87% at 773 K, at high space velocities (GHSV 324,000 h−1). The performances of the catalytic unsupported nanoparticles with a Ni/Co atomic ratio equal to 0.26 appear to be better than those of conventional supported catalysts. The state of Boron impurities affect catalytic activity of bimetallic (Co, Ni) NPs. Carbonaceous materials, such as carbon nanotubes and graphitic carbon, form on the catalyst surface upon reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Busca G (2014), Heterogeneous catalytic materials, Elsevier, New York, pp. 297–344

    Book  Google Scholar 

  2. Anderson JA, Fernández García M (eds) (2011) Supported metals in catalysis, 2nd Edition, World Scientific, New York

    Google Scholar 

  3. Ahmadi M, Mistry H, Roldan Cuenya B (2016) Phys Chem Lett 7:3519–3533

    Article  CAS  Google Scholar 

  4. Bion N, Duprez D, Epron F (2012) Chem Sus Chem 5:76–84

    Article  CAS  Google Scholar 

  5. Nahar G, Dupont V, Biofuels (2012) 3:167–191

    Article  CAS  Google Scholar 

  6. Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M, Ruan C, Chen H, Xu Y (2019) Sustain Energy Fuels 3:314–342

    Article  CAS  Google Scholar 

  7. Soykal I, Bayrama B, Sohna H, Gawadea P, Miller JT, Ozkan US (2012) Appl Catal A Gen 449:47–58

    Article  CAS  Google Scholar 

  8. Domínguez M, Cristiano G, López E, Llorca J (2011) Chem Eng J 176–177:280–285

    Article  Google Scholar 

  9. Resini C, Herrera Delgado MC, Presto S, Alemany LJ, Riani P, Marazza R, Ramis G, Busca G (2008) Int J Hydr En 33:3728–3735

    Article  CAS  Google Scholar 

  10. Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M (2010) Int J Hydr En 35:5356–5366

    Article  CAS  Google Scholar 

  11. Moretti E, Storaro L, Talon A, Chitsazan S, Garbarino G, Busca G, Finocchio E (2015) Fuel 153:166–175

    Article  CAS  Google Scholar 

  12. Gharahshiran VS, Yousefpour M (2018) Int J Hydr En 43:7020–7037

    Article  CAS  Google Scholar 

  13. Rodriguez-Gomez A, Caballero A (2018) Mol Catal 449:122–130

    Article  CAS  Google Scholar 

  14. Garbarino G, Wang C, Valsamakis I, Chitsazan S, Riani P, Finocchio E, Flytzani-Stephanopoulos M, Busca G (2015) Appl Catal B Environ 174:21–34

    Article  Google Scholar 

  15. Garbarino G, Chitsazan S, Phung TK, Riani P, Busca G (2015) Appl Catal A Gen 505:86–97

    Article  CAS  Google Scholar 

  16. Riani P, Garbarino G, Lucchini MA, Canepa F, Busca G (2014) J Mol Catal A Chem 383–384:10–16

    Article  Google Scholar 

  17. Garbarino G, Riani P, Lucchini MA, Canepa F, Kawale S, Busca G (2013) Int J Hydr En 38:82–91

    Article  CAS  Google Scholar 

  18. Riani P, Garbarino G, Infantes-Molina A, Rodríguez-Castellón E, Canepa F, Busca G (2016) Appl Catal A Gen 518:67–77

    Article  CAS  Google Scholar 

  19. Riani P, Garbarino G, Canepa F, Busca G (2018) J Chem Technol Biotechnol 94:538–546

    Article  Google Scholar 

  20. Pearson Crystal Data. Crystal structure database for inorganic compounds, Release 2018, ASM international, the Material Information Society

  21. Verbeeck J, Van Aert S (2004) Ultramicroscopy 101:207–224

    Article  CAS  Google Scholar 

  22. Delmastro A, Gozzelino G, Mazza D, Vallino M, Busca G, Lorenzelli V (1992) J Chem Soc Faraday Trans 88:2065–2070

    Article  CAS  Google Scholar 

  23. Mazza D, Vallino M, Busca G (1992) J Am Ceram Soc 75:1929–1934

    Article  CAS  Google Scholar 

  24. Simagina VI, Komova OV, Netskina OV, in Gromov A, Teipel U (eds), Metal nanopowders: production, characterization, and energetic applications (2014) 199–227

  25. Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1992) Langmuir 8:771–773

    Article  CAS  Google Scholar 

  26. Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1993) Langmuir 9:162–169

    Article  CAS  Google Scholar 

  27. Dou B, Zhang H, Cui G, Wang Z, Jiang B, Wang K, Chen H, Xu Y (2017) Int J Hydr En 42:26217–26230

    Article  CAS  Google Scholar 

  28. Dou B, Zhang H, Cui G, Wang Z, Jiang B, Wang K, Chen H, Xu Y (2018) En Conv Manag 155:243–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The collaboration of Elena Reghitto and Lea Pasquale during the preparation of their master theses is gratefully acknowledged.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Riani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbarino, G., Cavattoni, T., Riani, P. et al. On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming. Catal Lett 149, 929–941 (2019). https://doi.org/10.1007/s10562-019-02688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02688-9

Keywords

Navigation