Skip to main content
Log in

Design of Nanoalloyed Catalysts for Hydrogen Production Processes

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The use of supported nanoparticles of metal alloys as the active component makes it possible to modify the activity, selectivity, and stability of conventional monometallic supported heterogeneous catalysts. An approach to directed synthesis of bimetallic powders and supported catalysts based on the decomposition of double complex salts in the pores of the support is described. The efficiency of the proposed strategy was shown earlier by the example of catalysts for hydrogen production and purification processes: Pt0.5Co0.5/SiO2 and Au0.4Cu0.6/CeO2 catalysts for preferential oxidation of CO. Nanopowders of Pt0.5M0.5 (M = Fe, Co, Cu) and Pt0.33Ag0.67 and supported Pt0.5Cu0.5/Ce0.75Zr0.25O2 and Pt–CuOx/Ce0.75Zr0.25O2 catalysts are obtained in this work. It is shown that the nanopowders possess catalytic activity in the reaction of preferential CO oxidation in excess H2, while the Pt–Cu supported catalysts, in the low-temperature water gas shift reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. M. Thomas, P. P. Edwards, P. J. Dobson, and G. P. Owen, J. Energy Chem. 51, 405 (2020).

    Article  Google Scholar 

  2. Z. Abdin, A. Zafaranloo, A. Rafiee, et al., Renewable Sustainable Energy Rev. 120, 109620 (2020).

    Article  CAS  Google Scholar 

  3. H. T. Hwang and A. Varma, Curr. Opin. Chem. Eng. 5, 42 (2014).

    Article  Google Scholar 

  4. H. Nazir, C. Louis, S. Jose, et al., Int. J. Hydrogen Energy 45, 13777 (2020).

    Article  CAS  Google Scholar 

  5. R. A. Felseghi, E. Carcadea, M. S. Raboaca, et al., Energies 12, 4593 (2019).

    Article  CAS  Google Scholar 

  6. I. Staffell, D. Scamman, A. Velazquez Abad, et al., Energy Environ. Sci. 12, 463 (2019).

    Article  CAS  Google Scholar 

  7. J. M. Ohi, N. Vanderborgh, and G. Voecks, Safety, Codes and Standards Program (U. S. Dep. of Energy, 2016), p. 1.

    Google Scholar 

  8. A. Mishra and R. Prasad, Bull. Chem. React. Eng. Catal. 6 (1), 1 (2011).

    Article  CAS  Google Scholar 

  9. R. M. Navarro, M. A. Peña, and J. L. G. Fierro, Chem. Rev. 107, 3952 (2007).

    Article  CAS  Google Scholar 

  10. T. L. LeValley, A. R. Richard, and M. Fan, Int. J. Hydrogen Energy 39, 16983 (2014).

    Article  CAS  Google Scholar 

  11. S. Huang, K. Hara, and A. Fukuoka, Energy Environ. Sci. 2, 1060 (2009).

    Article  CAS  Google Scholar 

  12. P. Chin, X. Sun, G. W. Roberts, and J. J. Spivey, Appl. Catal., A 302, 22 (2006).

  13. E. Quinet, L. Piccolo, H. Daly, et al., Catal. Today 138, 43 (2008).

    Article  CAS  Google Scholar 

  14. Z. Wei, J. Sun, Y. Li, et al., Chem. Soc. Rev. 41, 7994 (2012).

    Article  CAS  Google Scholar 

  15. W. Yu, M. D. Porosoff, and J. G. Chen, Chem. Rev. 112, 5780 (2012).

    Article  CAS  Google Scholar 

  16. D. I. Potemkin, E. Y. Filatov, A. V. Zadesenets, and V. A. Sobyanin, Catal. Commun. 100, 232 (2017).

    Article  CAS  Google Scholar 

  17. D. I. Potemkin, M. V. Konishcheva, A. V. Zadesenets, P. V. Snytnikov, E. Yu. Filatov, S. V. Korenev, and V. A. Sobyanin, Kinet. Catal 59, 514 (2018).

    Article  CAS  Google Scholar 

  18. D. I. Potemkin, E. S. Saparbaev, A. V. Zadesenets, E. Yu. Filatov, P. V. Snytnikov, and V. A. Sobyanin, Catal. Ind. 10, 62 (2018).

    Article  Google Scholar 

  19. D. I. Potemkin, E. Y. Filatov, A. V. Zadesenets, et al., Mater. Lett. 260, 126915 (2020).

    Article  Google Scholar 

  20. D. I. Potemkin, E. Y. Semitut, Y. V. Shubin, et al., Catal. Today 235, 103 (2014).

    Article  CAS  Google Scholar 

  21. A. A. Vedyagin, Y. V. Shubin, R. M. Kenzhin, et al., Top. Catal. 62, 305 (2019).

    Article  CAS  Google Scholar 

  22. D. I. Potemkin, D. K. Maslov, K. Loponov, et al., Front. Chem. 6, 85 (2018).

    Article  Google Scholar 

  23. P. V. Snytnikov, V. D. Belyaev, and V. A. Sobyanin, Kinet. Catal. 48, 93 (2007).

    Article  CAS  Google Scholar 

  24. T. Shido and Y. Iwasawa, J. Catal. 136 (2), 493 (1992).

    Article  CAS  Google Scholar 

  25. G. Germani and Y. Schuurman, AlChE J. 52, 1806 (2006).

    Article  CAS  Google Scholar 

  26. G. Jacobs, U. M. Graham, E. Chenu, et al., J. Catal. 229, 499 (2005).

    Article  CAS  Google Scholar 

  27. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, Chem. Rev. 116, 5987 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.Yu. Gerasimov for TEM studies of the samples of nanopowders and supported catalysts.

Funding

The study was supported by the Russian Science Foundation (project no. 19-73-00157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Potemkin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potemkin, D.I., Snytnikov, P.V., Badmaev, S.D. et al. Design of Nanoalloyed Catalysts for Hydrogen Production Processes. Nanotechnol Russia 16, 195–201 (2021). https://doi.org/10.1134/S2635167621020117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621020117

Navigation