Skip to main content
Log in

Nickel Bipyridine (Ni(bpy)3Cl2) Complex Used as Molecular Catalyst for Photocatalytic CO2 Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile heterogeneous photocatalyst system that consists of a nickel complex and cadmium sulfide (CdS), which act as the catalyst and light antenna, respectively, was developed to the efficiency photocatalytic activation and conversion of CO2. Ni(bpy)3Cl2 was firstly found to be an active material for photocatalytic CO2 reduction. Besides, promoting the photo-generated electrons transfer from CdS to CO2 through such nickel complex further enhanced the catalytic activity. 5.2 µmol of CO has been obtained in acetonitrile solution containing Ni(bpy)3Cl2 under 2 h visible-light irradiation, which is approximately sixfold more than that system without Ni(bpy)3Cl2 complex. The different amount of Ni(bpy)3Cl2 used reveals the relationship of active center and photocatalytic performance. The use of a suitable amount of Ni(bpy)3Cl2 resulting in an apparent quantum yield of 1.68% at 420 nm. Electrochemical measurement and photochemical observation suggest a possible mechanistic detail of charge carrier transfer and information of key intermediates during CO2 reduction, which broadens the perspective of reaction mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yasuo I (2013) Coord Chem Rev 257:171

    Article  CAS  Google Scholar 

  2. He M, Sun Y, Han B (2013) Angew Chem Int Ed 52:9620

    Article  CAS  Google Scholar 

  3. Xie Y, Zhang Z, Jiang T. He J, Han B, Wu T, Ding K (2007) Angew Chem Int Ed 119:7393

    Article  Google Scholar 

  4. Gao P, Li S, Bu X, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y (2017) Nat Chem 9:1019

    Article  CAS  PubMed  Google Scholar 

  5. Lin J, Ding Z, Hou Y, Wang X (2013) Sci Rep 3:1056

    Article  CAS  Google Scholar 

  6. Halmann M (1978) Nature 275:115

    Article  CAS  Google Scholar 

  7. Wen F, Li C (2013) Acc Chem Res 46:2355

    Article  CAS  PubMed  Google Scholar 

  8. Ran J, Jaroniec M, Qiao S (2018) Adv Mater 30:1704649

    Article  CAS  Google Scholar 

  9. Avelino C, Hermenegildo G (2003) Chem Rev 103:4307

    Article  CAS  Google Scholar 

  10. Etsuko F, Furenlid LR, Renner MW (1997) J Am Chem Soc 119:4549

    Article  Google Scholar 

  11. Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036

    Article  CAS  PubMed  Google Scholar 

  12. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao H, Schmidt LC, Bonin J, Robert M (2017) Nature 548:74

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Angew Chem Int Ed 53:1034

    Article  CAS  Google Scholar 

  15. Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Inorg Chem 52:2484

    Article  CAS  PubMed  Google Scholar 

  16. Alsabeh PG, Rosas A, Barsch E, Henrik J, Ludwig R, Beller M (2016) Cat Sci Technol 6:3623

    Article  CAS  Google Scholar 

  17. Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V (2011) Chem Rev 111:1346

    Article  CAS  PubMed  Google Scholar 

  18. Craig CA, Spreer LO, Otvos JW, Calvin M (1990) J Phys Chem 94:7957

    Article  CAS  Google Scholar 

  19. Mochizuki K, Manaka S, Takeda I, Kondo T (1996) Inorg Chem 35:5132

    Article  CAS  Google Scholar 

  20. Thoi VS, Kornienk N, Margarit C, Yang P, Chang C (2013) J Am Chem Soc 135:14413

    Article  CAS  PubMed  Google Scholar 

  21. Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T (2017) J Am Chem Soc 139:6538

    Article  CAS  PubMed  Google Scholar 

  22. Wiese S, Kilgore UJ, Ho MH, Raugei S, Dubois DL, Bullock RM (2013) ACS Catal 3:2527

    Article  CAS  Google Scholar 

  23. Froehlich JD, Kubiak CP (2012) Inorg Chem 51:3932

    Article  CAS  PubMed  Google Scholar 

  24. Sakaki S (1992) J Am Chem Soc 114:2055

    Article  CAS  Google Scholar 

  25. Cometto C, Kuriki R, Chen L, Maeda K, Lau TC, Ishitani O, Robert MA (2018) J Am Chem Soc 140:7437

    Article  CAS  PubMed  Google Scholar 

  26. Neri G, Forster M, Walsh JJ, Robertson CM, Whittles TJ, Farras P, Cowan AJ (2016) Chem Commun 52:14200

    Article  CAS  Google Scholar 

  27. Muraoka K, Kumagai H, Eguchi M, Ishitani O, Maeda K (2016) Chem Commun 52:7886

    Article  CAS  Google Scholar 

  28. Maeda K, Kuriki R, Ishitani O (2016) Chem Lett 45:182

    Article  CAS  Google Scholar 

  29. Lee Y, Kim S, Kang JK, Cohen SM (2015) Chem Commun 51:5735

    Article  CAS  Google Scholar 

  30. Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Inorg Chem 54:6821

    Article  CAS  PubMed  Google Scholar 

  31. Kuriki R, Ishitani O, Maeda K (2016) ACS Appl Mater Interfaces 8:6011

    Article  CAS  PubMed  Google Scholar 

  32. Windle CD, Pastor E, Reynal A, Whitwood AC, Vaynzof Y, Durrant JR, Perutz RN, Reisner E (2015) Chem Eur J 21:3746

    Article  CAS  PubMed  Google Scholar 

  33. Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O (2014) J Mater Chem A 2:15146

    Article  CAS  Google Scholar 

  34. Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342

    Article  CAS  PubMed  Google Scholar 

  35. Kimura E, Wada S, Shionoya M, Okazaki Y (1994) Inorg Chem 33:770

    Article  CAS  Google Scholar 

  36. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Angew Chem Int Ed 49:5101

    Article  CAS  Google Scholar 

  37. Nakada A, Nakashima T, Sekizawa K, Maeda K, Ishitani O (2016) Chem Sci 7:4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K (2016) J Am Chem Soc 138:5159

    Article  CAS  PubMed  Google Scholar 

  39. Chai Z, Li Q, Xu D (2014) Rsc Adv 4:44991

    Article  CAS  Google Scholar 

  40. Lin J, Hou Y, Zheng Y, Wang X (2015) Chem Asian J 9:2468

    Article  CAS  Google Scholar 

  41. Kuriki R, Sekizawa K, Ishitani O, Maeda K (2015) Angew Chem Int ed 54:2406

    Article  CAS  Google Scholar 

  42. Kuehnel MF, Orchard KL, Dalle KE (2017) J Am Chem Soc 139:7217

    Article  CAS  PubMed  Google Scholar 

  43. Wang S, Lin J, Wang X (2014) Phys Chem Chem Phys 16:14656

    Article  CAS  PubMed  Google Scholar 

  44. Yuan Y, Lu H, Tu J, Fang Y, Yu Z, Fan X, Zou Z (2015) Chem Phys Chem 16:2925

    Article  CAS  PubMed  Google Scholar 

  45. Ruiz-Pérez C, Luis PAL, Lloret F, Julve M (2002) Inorg Chim Acta 336:131

    Article  Google Scholar 

  46. Fujita E, Brunschwig BS, Balzani V (eds); Wiley-VCH: Weinheim, Germany, 2001; Vol. 4, pp 88–126

  47. Zhao W, Huang Y, Liu Y, Cao L, Zhang F, Guo Y, Zhang B (2016) Chem Eur J 22:15049

    Article  CAS  PubMed  Google Scholar 

  48. Wong KN. Colson SD (1984) J Mol Spectrosc 104:129

    Article  CAS  Google Scholar 

  49. Al-Qudsi ZN, Abood HMA (2013) J Al-Nahrain University (Science) 16:46

    Article  Google Scholar 

  50. Formosinho SJ, Arnaut LG (1994) J Photochem Photobio A 82:11

    Article  CAS  Google Scholar 

  51. Fogeron T, Todorova JTK, Porcher J-P, Gomez-Mingot M, Chamoreau LM, Mellot-Draznieks C, Li Y, Fortecave M (2018) ACS Catal 8:2030

    Article  CAS  Google Scholar 

  52. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 40:89

    Article  Google Scholar 

  53. Finlayson MF, Wheeler BL, Kakuta N, Park KH, Bard AJ, Campion A, Fox MAS, Webber E, White M (1985) J Phys Chem 89:5676

    Article  CAS  Google Scholar 

  54. Sahoo D, Yoo C, Lee Y (2017) J Am Chem Soc 140:2179

    Article  CAS  Google Scholar 

  55. Morris AJ, Meyer GJ, Fujita E (2010) Acc Chem Res 41:1983

    Google Scholar 

  56. Tong H, Umezawa N, Ye J, Ohno T (2011) Energy Environ Sci 4:1684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Natural Science Foundation of Guizhou Province ([2017]1198). This work was also supported by projects of “Physical Breeding First-class Subjects” ([2018]34) and “Chemical First-class Subjects” ([2018]40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Lin.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1433 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Qin, B. & Fang, Z. Nickel Bipyridine (Ni(bpy)3Cl2) Complex Used as Molecular Catalyst for Photocatalytic CO2 Reduction. Catal Lett 149, 25–33 (2019). https://doi.org/10.1007/s10562-018-2586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2586-y

Keywords

Navigation