Skip to main content
Log in

Syntheses and Characterization of Zinc Oxide Nanoparticles on Graphene Sheets: Adsorption-Reaction In Situ DRIFTS of Methane and CO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zinc oxide and graphene support as catalyst were synthesized and characterized using different techniques. Results showed that graphene presented thermal stability, and maintained its structure under heat treatment at temperatures of 500 °C. TPD He experiments showed decomposition of residual compounds, releasing oxygenated compounds after functionalization of the graphene oxide. The catalyst performance was evaluated for the reaction of CH4 + CO2 and O2 by surface reaction at programmed temperature. We observed the formation of CO, H2 and H2O. However, TPSR and DRIFTS coupled to a mass spectrometer evidenced methane activation on ZnO/rGO-T, due to the evolution of H2 and CO2 traces of water and hydrocarbons, such as ethane (C2H6). Less sensitive but present was the signal 60, which can be assigned to the formation of acetic acid (CH3COOH) at 300 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wilcox EM, Roberts GW, Spivey JJ (2003) Direct catalytic formation of acetic acid from CO2 and methane. Catal Today 88(1–2):83–90. https://doi.org/10.1016/j.cattod.2003.08.007

    Article  CAS  Google Scholar 

  2. Havran V, Dudukovic MP, Lo CS (2011) Conversion of methane and carbon dioxide to higher value products. Ind Eng Chem Res 50(12):7089–7100. https://doi.org/10.1021/ie2000192

    Article  CAS  Google Scholar 

  3. Wilcox EM, Gogate MR, Roberts GW, Spivey JJ (2001) Direct synthesis of acetic acid from methane and carbon dioxide. In: Spivey JJ, Iglesia E, Fleisch TH (eds) Studies in surface science and catalysis, vol 136. Elsevier, Berlin, pp 259–264. https://doi.org/10.1016/S0167-2991(01)80313-X

    Chapter  Google Scholar 

  4. Huang W, Sun WZ, Li F (2009) Efficient synthesis of ethanol and acetic acid from methane and carbon dioxide with a continuous, stepwise reactor. AIChE J 56(5):1279–1284. https://doi.org/10.1002/aic.12073

    Article  CAS  Google Scholar 

  5. Spivey JJ, Wilcox EM, Roberts GW (2008) Direct utilization of carbon dioxide in chemical synthesis: vinyl acetate via methane carboxylation. Catal Commun 9(5):685–689. https://doi.org/10.1016/j.catcom.2007.08.023

    Article  CAS  Google Scholar 

  6. Wu J-F, Yu S-M, Wang WD et al (2013) Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite. J Am Chem Soc 135(36):13567–13573. https://doi.org/10.1021/ja406978q

    Article  CAS  PubMed  Google Scholar 

  7. Patil U, Saih Y, Abou-Hamad E et al (2014) Low temperature activation of methane over a zinc-exchanged heteropolyacid as an entry to its selective oxidation to methanol and acetic acid. Chem Commun 50(82):12348–12351. https://doi.org/10.1039/C4CC04950K

    Article  CAS  Google Scholar 

  8. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrog Energy 40(2):948–979. https://doi.org/10.1016/j.ijhydene.2014.10.129

    Article  CAS  Google Scholar 

  9. Navalon S, Dhakshinamoorthy A, Alvaro M et al (2016) Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord Chem Rev 312:99–148. https://doi.org/10.1016/j.ccr.2015.12.005

    Article  CAS  Google Scholar 

  10. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2(1):54–75. https://doi.org/10.1039/C1CY00361E

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  12. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Merino MJ, Guardia L, Paredes JI et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432. https://doi.org/10.1021/jp100603h

    Article  CAS  Google Scholar 

  14. Vega-Poot AG, Rodríguez-Gattorno G, Soberanis-Domínguez OE et al (2010) The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions. Nanoscale 2(12):2710–2717. https://doi.org/10.1039/C0NR00439A

    Article  CAS  PubMed  Google Scholar 

  15. Sing K, Everett DH, Haul RAW et al (1985) IUPAC reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  16. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  17. Schmal M (2016) Heterogeneous catalysis and its industrial applications. Springer, Rio de Janeiro. https://doi.org/10.1007/978-3-319-09250-8

    Book  Google Scholar 

  18. Huh SH (2011) Thermal reduction of graphene oxide. In: Mikhailov S (ed) Physics and applications of graphene—experiments. IntechOpen, London, pp 73–90. https://doi.org/10.5772/14156

    Chapter  Google Scholar 

  19. Du Q, Zheng M, Zhang L et al (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55(12):3897–3903. https://doi.org/10.1016/j.electacta.2010.01.089

    Article  CAS  Google Scholar 

  20. Andonovic B, Temkov M, Ademi A et al (2014) Laue functions model vs Scherrer equation in determination of graphene layers number on the ground of XRD data. J Chem Technol Metall 49(6):545–550

    Google Scholar 

  21. McMurdie HF, Morris MC, Evans EH et al (1986) Standard X-ray diffraction powder from the JCPDS Research Associateship. Powder Diffr 1(2):334–345. https://doi.org/10.1017/S0885715600011593

    Article  CAS  Google Scholar 

  22. Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291. https://doi.org/10.1039/B613962K

    Article  CAS  PubMed  Google Scholar 

  23. Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J Catal 179(1):192–202. https://doi.org/10.1006/jcat.1998.2177

    Article  CAS  Google Scholar 

  24. Oda A, Torigoe H, Itadani A et al (2014) An important factor in CH4 activation by Zn ion in comparison with Mg ion in MFI: the superior electron-accepting nature of Zn2+. J Phys Chem C 118(28):15234–15241. https://doi.org/10.1021/jp5013413

    Article  CAS  Google Scholar 

  25. Gabrienko AA, Arzumanov SS, Luzgin MV et al (2015) Methane activation on Zn2+-exchanged ZSM-5 zeolites. The effect of molecular oxygen addition. J Phys Chem C 119(44):24910–24918. https://doi.org/10.1021/acs.jpcc.5b08759

    Article  CAS  Google Scholar 

  26. Scarano D, Bertarione S, Spoto G et al (2001) FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide. Thin Solid Films 400(1–2):50–55. https://doi.org/10.1016/S0040-6090(01)01472-9

    Article  CAS  Google Scholar 

  27. Galhotra P (2010) Carbon dioxide adsorption on nanomaterials. PhD Thesis, University of Iowa https://ir.uiowa.edu/cgi/viewcontent.cgi?article=1855&context=etd

  28. Saussey J, Lavalley J-C, Bovet C (1982) Infrared study of CO2 adsorption on ZnO. Adsorption sites. J Chem Soc Faraday Trans 1 78(5):1457–1463. https://doi.org/10.1039/F19827801457

    Article  CAS  Google Scholar 

  29. Hussain G (2009) Oxidation of CO by O2 over ZnO studied by FTIR spectroscopy. J Chem Soc Pak 31(5):718–725. https://www.jcsp.org.pk/ArticleUpload/341-1351-1-CE.pdf

  30. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, Chichester. https://doi.org/10.1002/0470867981

    Book  Google Scholar 

  31. Kazansky VB, Serykh AI, Pidko EA (2004) DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. J Catal 225(2):369–373. https://doi.org/10.1016/j.jcat.2004.04.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge São Paulo Research Foundation (FAPESP), grant 2014/27317-7, and National Council for Scientific and Technological Development (CNPq) for financial support. The authors acknowledge Nucleus of Catalysis (NUCAT/COPPE/UFRJ) in particular Dr. R. Bonfim and the Chemistry Institute of the University of São Paulo for providing the analytical facilities and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmal.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, M., Schmal, M. & Guardani, R. Syntheses and Characterization of Zinc Oxide Nanoparticles on Graphene Sheets: Adsorption-Reaction In Situ DRIFTS of Methane and CO2. Catal Lett 148, 3413–3430 (2018). https://doi.org/10.1007/s10562-018-2538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2538-6

Keyword

Navigation