Skip to main content
Log in

Facile Synthesis of a New Chiral BINOL–Silica Hybrid Catalyst for Asymmetric Diels–Alder and Aza Michael Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel chiral BINOL–silica hybrid has been successfully prepared by the reaction of (S)-BINOL and SiCl4 following by gel polymerization under atmosphere condition. The synthesized catalyst was characterized by elemental analysis, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity of the chiral BINOL–silica hybrid for diastereo- and enantioselective Diels–Alder and aza Michael reactions has been investigated. Mild reaction conditions, high yields, excellent diastereo- and enantiomeric excess make this powerful and effective catalyst as an attractive option for the synthesis of chiral organic compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Wan KT, Davis ME (1994) Nature 370:449–450

    Article  CAS  Google Scholar 

  2. Ohmatsu K, Ooi T (2015) Tetrahedron Lett 56:2043–2048

    Article  CAS  Google Scholar 

  3. Ding K, Uozumi Y (2008) Handbook of asymmetric heterogeneous catalysis. Wiley, Weinheim

    Book  Google Scholar 

  4. Ojima I (2000) Catalytic asymmetric synthesis, 2nd edn. Wiley, New York

    Book  Google Scholar 

  5. Jacobsen EN, Pfaltz A, Yamamoto Y (1999) Comprehensive asymmetric catalysis. Springer, Berlin

    Book  Google Scholar 

  6. Blaser HU (1991) Tetrahedron 2:843–866

    Article  CAS  Google Scholar 

  7. Jannes G, Vincent D (1995) Chiral reactions in heterogeneous catalysis. Springer, Boston

    Book  Google Scholar 

  8. Bhaduri S, Mukesh D (2014) Homogeneous catalysis: mechanisms and industrial applications, 2nd edn. Wiley, Weinheim

    Google Scholar 

  9. Blaser HU (1991) Tetrahedron 9:843–866

    Article  Google Scholar 

  10. Gladysz JA (2002) Chem Rev 102:3215 – 3892

    Article  CAS  Google Scholar 

  11. Baleizao C, Garcia H (2006) Chem Rev 106:3987–4043

    Article  CAS  Google Scholar 

  12. Hutchings G (2004) Chem Soc Rev 33:108–122

    Article  Google Scholar 

  13. Hahn R, Raabe G, Enders D (2006) Angew Chem Int Ed 45:4732–4762

    Article  Google Scholar 

  14. Corma A, Garcia H (2003) Chem Rev 103:4307–4365

    Article  CAS  Google Scholar 

  15. Ramazani A, Asiabi PA, Aghahosseini H, Gouranlou F (2017) Curr Org Chem 21:908–922

    Article  CAS  Google Scholar 

  16. Li C, Liu Y (2014) Bridging heterogeneous and homogeneous catalysis: concepts, strategies, and applications, 1st edn. Wiley, Weinheim

    Google Scholar 

  17. Shylesh S, Thiel WR (2011) ChemCatChem 3:278–287

    Article  CAS  Google Scholar 

  18. Margelefsky EL, Zeidan RK, Davis MK (2008) Chem Soc Rev 37:1118–1126

    Article  CAS  Google Scholar 

  19. Haas KH (2000) Adv Eng Mater 2:571–582

    Article  CAS  Google Scholar 

  20. Sanchez C, Ribot F (1994) New J Chem 18:1007–1047

    CAS  Google Scholar 

  21. Cauqui MA, Rodriguez-Izquierdo JM (1992) J Non-Cryst Solids 147–148:724–738

    Article  Google Scholar 

  22. Brinker CH, Scherer GW (1990) Sol-gel science. Academic Press, London

    Google Scholar 

  23. Adima A, Moreau JJE, Wong C, Man M (2000) Chirality 12:411–420

    Article  CAS  Google Scholar 

  24. Loy DA, Shea KJ (1995) Chem Rev 95:1431–1442

    Article  CAS  Google Scholar 

  25. Fardood ST, Ramezani A, Moradi S (2017) J Sol-Gel Sci Technol 82:432–439

    Article  CAS  Google Scholar 

  26. Schmidt HK (1997) J Sol-Gel Sci Technol 8:557–565

    CAS  Google Scholar 

  27. Shea KJ, Loy DA, Webster OW (1992) J Am Chem Soc114:6700–6710

    Article  CAS  Google Scholar 

  28. Shea KJ, Loy DA (2001) Chem Mater 13:3306–3319

    Article  CAS  Google Scholar 

  29. Chen Y, Yekta S, Yudin AK (2003) Chem Rev 103:3155–3211

    Article  CAS  Google Scholar 

  30. Noyori R (1996) Acta Chem Scand 50:380–390

    Article  CAS  Google Scholar 

  31. Mikami K, Itoh Y, Yamanaka M (2004) Chem Rev 104:1–16

    Article  CAS  Google Scholar 

  32. Walsh P (2003) Chem Rev 103:3297–3344

    Article  CAS  Google Scholar 

  33. Rouhani M, Ramazani A, Joo SW (2014) Ultrason Sonochem 21:262–267

    Article  CAS  Google Scholar 

  34. Aghahosseini H, Ramazani A, Ślepokura K, Lis T (2018) J Colloid Interface Sci 511:222–232

    Article  CAS  Google Scholar 

  35. Moyano A, Rios R (2011) Chem Rev 111:4703–4832

    Article  CAS  Google Scholar 

  36. Nigam M, Rush B, Patel J, Castillo R, Dhar P (2016) J Chem Educ 93:753–756

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Saeidian.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 618 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidian, H., Paghandeh, H., Parvin, Z. et al. Facile Synthesis of a New Chiral BINOL–Silica Hybrid Catalyst for Asymmetric Diels–Alder and Aza Michael Reactions. Catal Lett 148, 1366–1374 (2018). https://doi.org/10.1007/s10562-018-2346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2346-z

Keywords

Navigation