Skip to main content
Log in

A Novel Triazole Bonded Silica Heterogeneous Catalyst for the One-Pot Synthesis of Pyrazolopyranopyrimidines and Dihydro-1H-pyrano[2,3-c]pyrazol-6-ones

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

We described here, the preparation of silica bonded n-propyl-4H-1,2,4-triazol-3-amine chloride by the reaction of 3-chloropropyl silica and 3-amino-1,2,4-triazole as a novel heterogeneous catalyst. The structure of the catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), dispersive X-ray spectroscopy (EDX), and scanning electronic microscopy (SEM). These techniques confirmed the catalyst was successfully synthesized. For evaluation of the catalytic activity and reusability of the catalyst, it was employed for the one-pot synthesis of dihydro-1H-pyrano[2,3-c]pyrazol-6-one and pyrazolopyranopyrimidine scaffolds. These compounds were prepared via the four-component catalytic reaction of hydrazine hydrate, ethyl acetoacetate, aromatic aldehydes, and Meldrum’s acid or barbituric acid (dimethylbarbituric acid). After completion of the reaction, the rapid separation and facial recycling of the catalyst were accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6

Similar content being viewed by others

References

  1. Sahoo BM, Banik BK (2020) 14—Solvent-less reactions: green and sustainable approaches in medicinal chemistry. Elsevier, Nederland

    Google Scholar 

  2. Cahyana AH, Liandi AR, Yulizar Y, Romdoni Y, Wendari TP (2021) Green synthesis of CuFe2O4 nanoparticles mediated by Morus alba L. leaf extract: crystal structure, grain morphology, particle size, magnetic and catalytic properties in Mannich reaction. Ceram Int 47:21373–21380

    Article  CAS  Google Scholar 

  3. Zhang N, Meng Y, Ning Y, Wheatley AEH, Chai F (2021) A reusable catalyst based on CuO hexapods and a CuO–Ag composite for the highly efficient reduction of nitrophenols. RSC Adv 11:13193–13200

    Article  CAS  Google Scholar 

  4. Xu J, Huang L, He L, Ni Z, Shen J, Li X, Chen K, Li W, Zhang P (2021) A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin-2(1H)-ones with ketones in water: a green and efficient route to (Z)-enaminones. Green Chem 23:2123–2129

    Article  CAS  Google Scholar 

  5. Huang F, Su Y, Tao Y, Sun W, Wang W (2018) Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst. Fuel 226:417–422

    Article  CAS  Google Scholar 

  6. Yoo WJ, Ishitani H, Saito Y, Laroche B, Kobayashi S (2020) Reworking organic synthesis for the modern age: synthetic strategies based on continuous-flow addition and condensation reactions with heterogeneous catalysts. J Org Chem 85:5132–5145

    Article  CAS  Google Scholar 

  7. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249–252

    Article  CAS  Google Scholar 

  8. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

  9. Pulusu VS, Kamatala CR, Mardhanpally AK, Yelike HS, Gugulothu Y, Mukka SK, Utkoor UK, Pulusu Y (2022) Silica supported acids (SiO2-HClO4, SiO2-KHSO4) as eco-friendly reuasble catalysts for bromination of aromatic and heteroaromatic compounds using KBr under solvothermal and solvent-free conditions. SILICON. https://doi.org/10.1007/s12633-021-01489-3

    Article  Google Scholar 

  10. Cui M, Wang D, Li Y, Zhao W, Liang C, Liu X, Fu S, Wang L, Wei X (2022) Preparation of magnetic silica supported Brønsted acidic ionic liquids for the depolymerization of lignin to aromatic monomers. New J Chem 46:4167–4178

    Article  CAS  Google Scholar 

  11. Liu B, Sekine N, Nakagawa Y, Tamura M, Yabushita M, Tomishige K (2022) Synthesis of secondary monoalcohols from terminal vicinal alcohols over silica-supported rhenium-modified ruthenium catalyst. ACS Sustain Chem Eng 10:1220–1231

    Article  CAS  Google Scholar 

  12. Chandrashekhar VG, Natte K, Alenad AM, Alshammari AS, Kreyenschulte C, Jagadeesh RV (2022) Reductive amination, hydrogenation and hydrodeoxygenation of 5-hydroxymethylfurfural using silica-supported cobalt-nanoparticles. ChemCatChem 14:e202101234. https://doi.org/10.1002/cctc.202101234

    Article  CAS  Google Scholar 

  13. Kumar H, Das R, Choithramani A, Gupta A, Khude D, Bothra G, Shard A (2021) Efficient green protocols for the preparation of pyrazolopyrimidines. ChemSelect 6:5807–5837

    CAS  Google Scholar 

  14. Kamdar NR, Haveliwala DD, Mistry PT, Patel SK (2010) Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur J Med Chem 45:5056–5063

    Article  CAS  Google Scholar 

  15. Rajendra Prasad Y, Lakshmana Rao A, Prasoona L, Murali K, Ravi Kumar P (2005) Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bio Med Chem Lett 15:5030–5034

    Article  CAS  Google Scholar 

  16. Nasr MN, Gineinah MM (2002) Pyrido [2, 3-d]pyrimidines and Pyrimido[5′, 4′:5, 6]pyrido[2, 3-d]pyrimidines as new antiviral agents: synthesis and biological activity. Arch Pharm 335:289–295

    Article  CAS  Google Scholar 

  17. Agarwal A, Ramesh A, Goyal N, Chauhan PMS, Gupta S (2005) Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bio Med Chem 13:6678–6684

    Article  CAS  Google Scholar 

  18. Ahluwalia VK, Sharma P, Goyal B, Aggarwal R (1997) Synthesis of some new 2-(pyrazol-l-yl)-4-(pyrimidin-5-yl)thiazoles. Indian J Chem B 36B:920–922

    CAS  Google Scholar 

  19. Azzam SHS, Pasha MA (2012) Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-component reaction. Tetrahedron Lett 53:6834–6837

    Article  CAS  Google Scholar 

  20. Heravi MM, Mousavizadeh F, Ghobadi N, Tajbakhsh M (2014) A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett 55:1226–1228

    Article  CAS  Google Scholar 

  21. Patil KT, Jamale DK, Valekar NJ, Patil PT, Warekar PP, Kolekar GB, Anbhule PV (2017) Uncatalyzed four-component synthesis of pyrazolopyranopyrimidine derivatives and their antituberculosis activities. Synth Commun 47:111–120

    Article  CAS  Google Scholar 

  22. Wei J, Wenjun G, Gui Y, Zhang Z, Yousif QA (2020) SCMNPs@Uridine/Zn: an effi cient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free condition. Pol J Chem Technol 22:20–33

    Article  CAS  Google Scholar 

  23. Rigi F, Shaterian HR (2012) Magnetic nanoparticle supported ionic liquid assisted green synthesis of pyrazolopyranopyrimidines and 1,6-diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarbonitriles. J Chin Chem Soc 63:557–561

    Article  Google Scholar 

  24. Shaterian HR, Rigi F (2011) Starch sulfate as an efficient and biodegradable polymer catalyst for one-pot, four-component reaction of 2H-indazolo[2,1-b]phthalazine-triones. Starch 63:340–346

    Article  CAS  Google Scholar 

  25. Rigi F, Shaterian HR (2017) Silica-supported ionic liquids prompted one-pot four-component synthesis of pyrazolopyranopyrimidines, 3-methyl-4-aryl-4,5-dihydro-1H-pyrano[2,3-c]pyrazol-6-ones, and 1,6-diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarbonitriles. Polycycl Aromat Compd 37:314–326

    Article  CAS  Google Scholar 

  26. Bi W, Zhou J, Row KH (2010) Separation of xylose and glucose on different silica-confined ionic liquid stationary phases. Anal Chim Act 677:162–168

    Article  CAS  Google Scholar 

  27. Li XT, Zhao AD, Mo LP, Zhang ZH (2014) Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv 4:51580–51588

    Article  CAS  Google Scholar 

  28. Niknam K, Jamali A, Tajaddod M, Deris A (2012) Synthesis of 2-amino-4,6-diarylnicotinonitriles using silica-bound N-propyl triethylenetetramine sulfamic acid as a recyclable solid acid catalyst. Chin J Catal 33:1312–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the University of Sistan and Baluchestan Research Council for the partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rigi.

Ethics declarations

Conflict of interest

The authors declare that there is no confict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigi, F., Shaterian, H.R. A Novel Triazole Bonded Silica Heterogeneous Catalyst for the One-Pot Synthesis of Pyrazolopyranopyrimidines and Dihydro-1H-pyrano[2,3-c]pyrazol-6-ones. Chemistry Africa 5, 1255–1263 (2022). https://doi.org/10.1007/s42250-022-00408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00408-2

Keywords

Navigation