Skip to main content
Log in

The Influence of the Pyrolysis Temperature on the Material Properties of Cobalt and Nickel Containing Precursor Derived Ceramics and their Catalytic Use for CO2 Methanation and Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni and Co containing precursor derived ceramics (ceramers) were prepared from a polysiloxane based preparation route. All catalysts were characterised by BET, XRD and TEM as well as by water and heptane adsorption and tested for CO2 methanation and Fischer–Tropsch synthesis. Different pyrolysis temperatures between 400 and 600 °C were used to get catalysts with different surface hydrophilicities. With increasing synthesis temperature less organic groups remain on the surface, resulting in a more hydrophilic catalyst. For all Ni containing ceramers, well dispersed particles in the range of 3 nm were formed and comparable surface areas were found. The catalysts with the lowest tendency towards water adsorption showed the highest activity for CO2 methanation. In contrast to the Ni catalysts, for the Co containing ceramers particle formation was dependent on the pyrolysis temperature. While no metallic particles were formed at 400 °C, small particles in the range of ~5 nm were obtained, using a pyrolysis temperature of 500 °C. Increasing the pyrolysis temperature to 600 °C, the particle size increased to ~10 nm. First tests for CO2 methanation and Fischer–Tropsch reaction were successfully carried out and the catalysts with the less hydrophilic surface showed higher activity and a higher selectivity towards C5+-products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khodakov Y, Chu W, Fong P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  2. Wang W, Gong J (2011) Front Chem Sci Eng 5:2–10

    Article  CAS  Google Scholar 

  3. Purr K, Osiek D, Lange M, Adlu K (2016) “www.umweltbundesamt.de”. http://www.umweltbundesamt.de/publikationen/integration-von-power-to-gaspower-to-liquid-in-den. Accessed 2016

  4. Riedel T (1999) App Catal A 186:201

    Article  CAS  Google Scholar 

  5. Jess A, Wasserscheid P (2002) UWSF Z Umweltchem Ökotox 14:145–154

    Article  CAS  Google Scholar 

  6. Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) J Catal 266:129–144

    Article  CAS  Google Scholar 

  7. Beulsa C, Swalusa M, Jacquemina G, Heyenb, A. Karelovica, Ruiza P (2012) Appl Catal B 113:2–10

    Article  Google Scholar 

  8. Bian L, Zhang L, Xia R, Li Z (2015) J Nat Gas Sci Eng 27:1189–1194

    Article  CAS  Google Scholar 

  9. Ding M, Tu JT, Zhang Q, Wang M (2016) Biomass Bioenerg 85:12–17

    Article  CAS  Google Scholar 

  10. Du G, Lim S, Yang Y, Wanga C, Pfefferlea L, Hallera GL (2007) J Catal 249:370–379

    Article  CAS  Google Scholar 

  11. Duyar MS, Ramachandran A, Wan C (2015) J CO2 Util 12:27–33

    Article  CAS  Google Scholar 

  12. Fan Z, Sun K, Rui N, Zhao B, C.-j. Liu (2015) J Energy Chem 24:655–659

    Article  Google Scholar 

  13. Kuśmierz M (2008) Catal Today 137:429–432

    Article  Google Scholar 

  14. Vance K, Bartholomew CH (1983) Appl Catal 7:169–177

    Article  CAS  Google Scholar 

  15. Weatherbee GD, Bartholomew CH (1981) J Catal 68:67–76

    Article  CAS  Google Scholar 

  16. Zamani, R. Ali, Abu Bakar W J Ind Eng Chem 29:238–248

  17. van der Laan G, Beenackers A (1999) Catal Rev 41:255–318

    Article  Google Scholar 

  18. Yao Y, Liu X, Hildebrandt D, Glasser D (2012) Chem Eng J 193–194:318–327

    Article  Google Scholar 

  19. Chakrabarti D, de Klerk A, Prasad V, Gnanamani MK, Shafer WD, Jacobs G, Sparks DE, Davis BH (2015) Ind Eng Chem Res 54:1189–1196

    Article  CAS  Google Scholar 

  20. Weatherbee GD, Bartholomew CH (1984) J Catal 87:352–362

    Article  CAS  Google Scholar 

  21. Baker WAWA, Ali R, Kadir AAA, Rosid SJM, Mohammad NS (2012) J Fuel Chem Technol 40:822–830

    Article  Google Scholar 

  22. Janlamool J, Praserthdam P, Jongsomjit B (2011) J Nat Gas Chem 20:558–564

    Article  CAS  Google Scholar 

  23. Srisawad N, Chaitree W, Mekasuwandumrong O, Shotipruk A, Jongsomjit B, Panpranot J (2012) Reac Kinet Mech Cat 107:179–188

    Article  CAS  Google Scholar 

  24. Zhou G, Wu T, Xie H, Zheng X (2013) Int J Hydrog Energy 38:10012–10018

    Article  CAS  Google Scholar 

  25. Huang C-P, Stumm W (1972) Surf Sci 32:287–296

    Article  CAS  Google Scholar 

  26. Yan X, Liu Y, Zhao B, Wang Z, Wang Y, C-J. Liu (2013) Int J Hydrog Energy 38:2283–2291

    Article  CAS  Google Scholar 

  27. Chin RL, Hercules DM (1982) J Phys Chem 86:360–367

    Article  CAS  Google Scholar 

  28. Wang WJ, Chen YW (1991) Appl Catal 77:223–233

    Article  CAS  Google Scholar 

  29. Joo O-S, Jung K-D (2002) Bull Korean Chem Soc 23:1149–1153

    Article  CAS  Google Scholar 

  30. de Beer M, Kunene A, Nabaho D, Claeys M, van Steen E (2014) J South Afr Inst Min Metall 114:157–165

    Google Scholar 

  31. Zhang H, Chu W, Zou C, Huang Z, Ye Z, Zhu L (2011) Catal Lett 141:438–444

    Article  CAS  Google Scholar 

  32. Bezemer G, Bitter JH, H. P. C. E. Kuipers, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  33. Colombow P, Mera G, Riedel R, Soraru GD (2010) J Am Ceram Soc 93:1805–1837

    Google Scholar 

  34. Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Mat Sci Eng R 106:1–30

    Article  Google Scholar 

  35. Gualandris V, Hourlier-Bahloul D, Babonneau F (1999) J Sol–Gel Technol 14:39–48

    Article  CAS  Google Scholar 

  36. Mutin P (1999) J Sol–Gel Sci Technol 14:27–38

    Article  CAS  Google Scholar 

  37. Schmidt H, Koch D, Grathwohl G (2000) Chem Eng Technol 23:959–964

    Article  CAS  Google Scholar 

  38. Hojamberdiev M, Prasad RM, Fasel C, Riedel R, Ionescu E (2013) J Eur Ceram Soc 33:2465–2472

    Article  CAS  Google Scholar 

  39. Pereira JL, Godoy NV, Ribeiro ES, Segatelli MG (2015) J Anal Appl Pyrolysis 114:11–21

    Article  CAS  Google Scholar 

  40. Zaheer M, Hermannsdorfer J, Kretschmer W, Motz G, Kempe R (2014) Chem Cat Chem 6:91–95

    CAS  Google Scholar 

  41. Zaheer M, Keenan CD, Hermannsdörfer J, Roessler E, Motz G, Senker J, Kempe R (2012) Chem Mater 24:3952–3963

    Article  CAS  Google Scholar 

  42. Forberg J, Obenauf M, Friedrich S, Huhne, Mader W, Motz G, Kempe R (2014) Catal Sci Technol 4:4188–4192

    Article  CAS  Google Scholar 

  43. Wójcik-Bania M, Krowiak A, Strzezik J, Hasik M (2016) Mater Des 96:171–179

    Google Scholar 

  44. Schwarz S, Friedrich M, Motz G, Kempe R (2015) Z Anorg Allg Chem 641:2266–2271

    Article  CAS  Google Scholar 

  45. Kockrick R, Frind M, Rose U, Petasch, Böhlmann W, Geiger D, Herrmann M, Kaskel S (2009) J Mater Chem 19:1543–1553

    Article  CAS  Google Scholar 

  46. Adam M, Wilhelm M, Grathwohl G (2012) Microporous Mesoporous Mater 151:195–200

    Article  CAS  Google Scholar 

  47. Sonström P, Adam M, Wang X, Wilhelm M, Grathwohl G, Bäumer M (2010) J Phys Chem C 114:14224–14232

    Article  Google Scholar 

  48. Schmalz T, Kraus T, Günthner M, Liebscher C, Glatzel U, Kempe R, Motz G (2011) Carbon 49:3065–3072

    Article  CAS  Google Scholar 

  49. Adam M, Kocanis S, Fey T, Wilhelm M, Grathwohl G (2014) J Eur Ceram Soc 34:1715–1725

    Article  CAS  Google Scholar 

  50. Adam M, Vakifahmetoglu C, Colombo P, Wilhelm M, Grathwohl G (2014) J Am Ceram Soc 97:959–966

    Article  CAS  Google Scholar 

  51. Schlüter, Meyer J, Wilhelm M, Rezwan K Colloids Surf A 492:160–169

  52. Prenzel T, Wilhelm M, Rezwan K (2013) Microporous Mesoporous Mater 169:160–167

    Article  CAS  Google Scholar 

  53. Wilhelm M, Adam M, Bäumer M, Grathwohl G (2008) Adv Eng Mater 10:241–245

    Article  CAS  Google Scholar 

  54. Blasco T, Comblor M, Corma A, Esteve P, Guil J, Martinez A (1998) J Phys Chem B 102:75–88

    Article  CAS  Google Scholar 

  55. Camblor M, Corma A, Esteve P, Martinez A, Valencia S (1997) Chem Commun 8:795–796

    Article  Google Scholar 

  56. M. A. A. Aziz, Jalil AA, Triwahyono S, M. W. A. Saad (2015) Chem Eng J 260:757–764

    Article  CAS  Google Scholar 

  57. Xie R, Li D, Hou B, Wang J, Jia L, Sun Y (2011) Catal Comm 12:589–592

    Article  CAS  Google Scholar 

  58. Jia L, Jia L, Li D, Hou B, Wang J, Sun Y (2011) J Solid State Chem 184:488–493

    Article  CAS  Google Scholar 

  59. Shi L, Chen J, Fang K, Sun Y (2008) Fuel 87:521–526

    Article  CAS  Google Scholar 

  60. Iglesia E, Reyes S, Madon R, Soled S (1993) Adv Catal 39:221–302

    CAS  Google Scholar 

  61. Haglund J, Fernandez Guillermet F, Grimvall G (1993) Phys Rev B 48:11685–11691

    Article  CAS  Google Scholar 

  62. Owen E, Madoc Jones D (1954) Proc Phys Soc 67:456–466

    Article  Google Scholar 

  63. Freidlin LK, Balandin AA, Borunova NV, Agronomov AE (1956) B Acad Sci USSR 5:935–942

    Article  Google Scholar 

  64. Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Int J Hydrog Energy 37:5527–5531

    Article  CAS  Google Scholar 

  65. Rahmani S, Rezaei M, Meshkani F (2014) J Ind Eng Chem 20:1346–1352

    Article  CAS  Google Scholar 

  66. Fischer N, van Steen E, Claeys M (2013) J Catal 299:67–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the Research Training Group GRK 1860 “Micro-, meso- and macroporous nonmetallic Materials: Fundamentals and Applications” (MIMENIMA) and we grateful thanks the German Research Foundation (DFG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Bäumer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, M., Wilhelm, M., Bragulla, S. et al. The Influence of the Pyrolysis Temperature on the Material Properties of Cobalt and Nickel Containing Precursor Derived Ceramics and their Catalytic Use for CO2 Methanation and Fischer–Tropsch Synthesis. Catal Lett 147, 472–482 (2017). https://doi.org/10.1007/s10562-016-1919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1919-y

Keywords

Navigation