Skip to main content

Advertisement

Log in

Influence of the Preparation Method on Hybrid Catalysts CuO–ZnO–Al2O3 and H-Ferrierite for Syngas Transformation to Hydrocarbons via Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hybrid catalysts using CuO–ZnO–Al2O3 as a catalyst for the synthesis of methanol and an H-ferrierite zeolite as the dehydration component were prepared using four different methods to study the influence of the method of preparation on the active sites available on both components and the performance of the hybrid catalyst in the conversion of syngas in hydrocarbons. The samples were characterized by X-ray diffraction, N2 adsorption, temperature-programmed reduction, temperature-programmed desorption of H2, temperature-programmed desorption of ammonia, and transmission electron microscopy. The samples were tested in a tubular reactor at 2.0 MPa and 350 °C. The preparation methods influenced the interaction between both components and consequently affected the surface properties of each component. The Cu surface area and available acid sites were affected by the preparation method. The coprecipitation-sedimentation method showed a better interaction between both components, a high Cu surface area and a high concentration of strong acid sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jin Y, Asaoka S, Li X, Asami K, Fujimoto K (2004) Fuel Process Technol 85:1151–1164

    Article  CAS  Google Scholar 

  2. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2004) Fuel Process Technol 85:1139–1150

    Article  CAS  Google Scholar 

  3. Ge Q, Li X, Kaneko H, Fujimoto K (2007) J Mol Catal A Chem 278:215–219

    Article  CAS  Google Scholar 

  4. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2007) Catal Lett 102:52

    Google Scholar 

  5. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2005) Catal Today 104:30–36

    Article  CAS  Google Scholar 

  6. Ge Q, Lian Y, Yuan X, Li X, Fujimoto K (2008) Catal Commun 9:256–261

    Article  CAS  Google Scholar 

  7. Wang C, Zhang D, Fang C, Ge Q, Xu H (2014) Fuel 134:11–16

    Article  CAS  Google Scholar 

  8. Ma T, Imai H, Suehiro Y, Chen C, Kimura T, Asaoka S, Li X (2014) Catal Today 228:167–174

    Article  CAS  Google Scholar 

  9. Kang SH, Bae J, Jun KW, Potdar H (2008) Catal Commun 9:2035–2039

    Article  CAS  Google Scholar 

  10. Bae J, Kang SH, Lee YJ, Jun KW (2009) Appl Catal B 90:426–435

    Article  CAS  Google Scholar 

  11. Li JL, Zhang XG, Inui T (1996) Appl Catal A 147:23–33

    Article  CAS  Google Scholar 

  12. Jin Y, Asaoka S, Li X, Asami K, Fujimoto K (2004) J Jpn Petrol Inst 47:394–402

    Article  CAS  Google Scholar 

  13. Jin Y, Asaoka S, Li X, Asami K, Fujimoto K (2005) J Jpn Petrol Inst 48:45–52

    Article  CAS  Google Scholar 

  14. Zhu W, Li X, Kaneko H, Fujimoto K (2007) Nat Gas Convers VIII:355

    Google Scholar 

  15. Fujimoto K, Kaneko H, Zhang Q, Ge Q, Li X (2007) Nat Gas Convers VIII:349

    Google Scholar 

  16. Ge Q, Li X, Fujimoto K (2007) From zeolites to porous MOF materials. In: The 40th anniversary of international zeolite conference, 1260

  17. Park YK, Park KC, Ihm SK (1998) Catal Today 44:165–173

    Article  CAS  Google Scholar 

  18. Asami K, Zhang Q, Li X, Asaoka S, Fujimoto K (2004) Stud Surf Sci Catal 147:427

    Article  CAS  Google Scholar 

  19. Ge Q, Tomonobu T, Fujimoto K, Li X (2008) Catal Commun 9:1775–1778

    CAS  Google Scholar 

  20. Khoshbin R, Haghighi M (2013) Chem Eng Res Des 91:1111–1122

    Article  CAS  Google Scholar 

  21. Ge Q, Huang Y, Qiu F, Li S (1998) Appl Catal A 167:23–30

    Article  CAS  Google Scholar 

  22. Moradi G, Nosrati S, Yaripor F (2007) Catal Commun 8:598–606

    Article  CAS  Google Scholar 

  23. Mühler M, Nielsen L, Törnoqvist E, Clausen B, Topsoe H (1992) Catal Lett 14:241–249

    Article  Google Scholar 

  24. Zhang L, Li F, Evans DG, Duan X (2004) Mater Chem Phys 87:402–410

    Article  CAS  Google Scholar 

  25. Frost R, Ding Z, Martens W, Johnson T (2003) Thermochim Acta 398:167–174

    Article  CAS  Google Scholar 

  26. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlögl R, Ressler T (2008) Appl Catal A 348:153–164

    Article  CAS  Google Scholar 

  27. Flores JH, Pais da Silva MI (2008) Appl Surf Sci 254:6461–6466

    Article  CAS  Google Scholar 

  28. Guo XJ, Li LM, Liu SM, Bao GL, Hou WH (2007) J Fuel Chem Technol 35:3

    Google Scholar 

  29. Gao P, Li F, Xiao F, Zhao N, Wei W, Zhing L, Sun Y (2012) Catal Today 194:9–15

    Article  CAS  Google Scholar 

  30. Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Wang H, Sun Y (2013) J Catal 298:51–60

    Article  CAS  Google Scholar 

  31. Gao P, Xie R, Wang H, Zhong L, Xia L, Zhang Z, Wei W, Sun Y (2015) J CO2 Util 11:41–48

    Article  CAS  Google Scholar 

  32. Palgunadi J, Yati I, Jung KD (2010) React Kinet Mech Catal 101:117–128

    Article  CAS  Google Scholar 

  33. Yaripour F, Baghaei F, Schmidt I, Perregaard J (2005) Catal Commun 6:147–152

    Article  CAS  Google Scholar 

  34. Damjanovic L, Auroux A (2009) In: Chester AW, Derouane EG (eds) Zeolite characterization and catalysis. Springer, New York, pp 107–167

    Chapter  Google Scholar 

  35. Moradi G, Nazari M, Yaripour F (2008) Fuel Process Technol 89:1287–1296

    Article  CAS  Google Scholar 

  36. Jin D, Zhu B, Hou Z, Fei J, Lou H, Zheng X (2007) Fuel 86:2707–2713

    Article  CAS  Google Scholar 

  37. Kim SD, Baek SC, Lee YJ, Jun KW, Kim MJ, Yoo IS (2006) Appl Catal A 309:139–143

    Article  CAS  Google Scholar 

  38. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) J Catal 230:140

    Article  CAS  Google Scholar 

  39. Khandan N, Kazemeini M, Aghaziarati M (2009) Catal Lett 129:111–118

    Article  CAS  Google Scholar 

  40. Flores JH, Pais da Silva MI (2008) Colloids Surf A 3221-3:113–123

    Article  Google Scholar 

  41. Wichterlová B, Tvaruzková Z, Sobalík Z, Sarv P (1998) Microporous Mesoporous Mater 24:223–233

    Article  Google Scholar 

  42. Janchen J, Vorbeck G, Stach H, Parlitz B, Van Hooff J (1995) Stud Surf Sci Catal 94:108

    Article  CAS  Google Scholar 

  43. Chen J, Thomas J, Sankar G (1994) J Chem Soc Farad Trans 90:3455

    Article  CAS  Google Scholar 

  44. Mysov VM, Reshetnikov SI, Stepanov VG, Ione KG (2005) Chem Eng J 107:63–71

    Article  CAS  Google Scholar 

  45. Waugh KC (2004) Solid State Ionics 168:327–342

    Article  CAS  Google Scholar 

  46. Behrens M (2009) J Catal 267:24–29

    Article  CAS  Google Scholar 

  47. Flores JH, Peixoto DPB, Appel LG, Avillez RR, Pais da Silva MI (2011) Catal Today 172:218–225

    Article  CAS  Google Scholar 

  48. Fichtl MB, Schumann J, Kasatkin I, Jacobsen N, Behrens M, Schlcgl R, Muhler M, Hinrichsen O (2014) Angew Chem Int Ed 53:7043–7047

    Article  CAS  Google Scholar 

  49. Garcia-Trenco A, Vidal-Moya A, Martinez A (2012) Catal Today 179:43–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Pais da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, J.H., da Silva, M.I.P. Influence of the Preparation Method on Hybrid Catalysts CuO–ZnO–Al2O3 and H-Ferrierite for Syngas Transformation to Hydrocarbons via Methanol. Catal Lett 146, 1505–1516 (2016). https://doi.org/10.1007/s10562-016-1771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1771-0

Keywords

Navigation