Skip to main content
Log in

The Carburization of Transition Metal Molybdates (MxMoO4, M = Cu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new approach has been tested for the preparation of metal/Mo2C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu3(MoO4)2(OH)2, α-NiMoO4 and CoMoO4·nH2O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo2C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu2+, Ni2+ and Co2+ cations inside each molybdate. The synthesized Cu/Mo2C, Ni/Mo2C and Co/Mo2C catalysts were highly active for the hydrogenation of CO2. The metal/Mo2C systems exhibited large variations in the selectivity towards methanol, methane and CnH2n+2 (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C–O bonds. Cu/Mo2C displayed a high selectivity for CO and methanol production. Ni/Mo2C and Co/Mo2C were the most active catalysts for the activation and full decomposition of CO2, showing high selectivity for the production of methane (Ni case) and CnH2n+2 (n > 2) hydrocarbons (Co case).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York

    Google Scholar 

  2. Oyama ST (1996) Chemistry of transition metal carbides and nitrides. Springer, Berlin

    Book  Google Scholar 

  3. Xu L, Li S, Zhang Y, Zhai Y (2012) Nanoscale 4:4900

    Article  CAS  Google Scholar 

  4. Levy RB, Boudart M (1973) Science 181:547

    Article  CAS  Google Scholar 

  5. Hwu HH, Chen JG (2005) Chem Rev 105:185

    Article  CAS  Google Scholar 

  6. Furimsky E (2003) Appl Catal A 240:1

    Article  CAS  Google Scholar 

  7. Oyama ST (1992) Catal Today 15:179

    Article  CAS  Google Scholar 

  8. Schwartz V, da Silva VT, Oyama ST (2000) J Mol Catal A 163:251

    Article  CAS  Google Scholar 

  9. Diaz B, Sawhill SJ, Bale DH, Main R, Phillips DC, Korlann S, Self R, Bussell ME (2003) Catal Today 86:191

    Article  CAS  Google Scholar 

  10. Xu W, Ramírez PJ, Stacchiola D, Rodriguez JA (2014) Catal Lett 144:1418

    Article  CAS  Google Scholar 

  11. Koós A, Solymosi F (2010) Catal Lett 138:23

    Article  Google Scholar 

  12. Hugosson HW, Eriksson O, Jansson U, Johansson B (2001) Phys Rev B 63:165116

    Article  Google Scholar 

  13. Sathish CI et al (2012) J Solid State Chem 196:579

    Article  CAS  Google Scholar 

  14. Posada-Pérez S, Vines F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) Phys Chem Chem Phys 16:14912

    Article  Google Scholar 

  15. Puello-Polo E, Brito JL (2008) J Mol Catal A Chem 281:85

    Article  CAS  Google Scholar 

  16. Ono LK, Roldan-Cuenya B (2007) Catal Lett 113:86

    Article  CAS  Google Scholar 

  17. Vidal AB, Feria L, Evans J, Takahashi Y, Liu P, Nakamura K, Illas F, Rodriguez JA (2012) J Phys Chem Lett 3:2275

    Article  CAS  Google Scholar 

  18. Schweitzer NM, Schaidle JA, Ezekoye OK, Pan X, Linic S, Thompson LT (2011) J Am Chem Soc 133:2378

    Article  CAS  Google Scholar 

  19. Rodriguez JA, Ramírez PJ, Asara GG, Viñes F, Evans J, Liu P, Ricart JM, Illas F (2014) Angew Chem Int Ed 53:11270

    Article  CAS  Google Scholar 

  20. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Angew Chem Int Ed 53:6705

    Article  CAS  Google Scholar 

  21. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) J Catal 307:172

    Article  Google Scholar 

  22. Rodriguez JA, Liu P, Takahashi Y, Nakamura K, Viñes F, Illas F (2009) J Am Chem Soc 131:8595

    Article  CAS  Google Scholar 

  23. Rodriguez JA, Illas F (2012) Phys Chem Chem Phys 14:427

    Article  CAS  Google Scholar 

  24. Yoshihara J, Campbell CT (1996) J Catal 161:776

    Article  CAS  Google Scholar 

  25. Dubois JL, Sayama K, Arakawa H (1992) Chem Lett 21:5

    Article  Google Scholar 

  26. Guzmán HJ, Xu W, Stacchiola D, Vitale G, Scott CE, Rodríguez JA, Pereira-Almao P (2013) Can J Chem 91:573

    Article  Google Scholar 

  27. Brito JL, Barbosa AL (1997) J Catal 171:467

    Article  CAS  Google Scholar 

  28. Rodriguez JA, Chaturvedi S, Hanson JC, Albornoz A, Brito JL (1998) J Phys Chem B 102:1347

    Article  CAS  Google Scholar 

  29. Brito JL, Barbosa AL, Albornoz A, Severino F, Laine J (1994) Catal Lett 26:329

    Article  CAS  Google Scholar 

  30. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Press Res 14:235

    Article  Google Scholar 

  31. Rodriguez JA, Chaturvedi S, Hanson JC, Brito J (1999) J Phys Chem B 103:770

    Article  CAS  Google Scholar 

  32. Larson AC, Von Dreele RB (1994) Los Alamos National Laboratory Report LAUR

  33. Bouchy C, Pham-huu C, Ledoux MJ (2000) J Mol Catal A Chem 162:317

    Article  CAS  Google Scholar 

  34. Bouchy C, Hamid SBDA, Derouane EG (2000) Chem Commun 2:125

    Article  Google Scholar 

  35. Xiao T, York APE, Coleman KS, Claridge JB, Sloan J, Charnock J, Green MLH (2001) J Mater Chem 11:3094

    Article  CAS  Google Scholar 

  36. Liang C, Ma W, Feng Z, Li C (2003) Carbon 41:1833

    Article  CAS  Google Scholar 

  37. Wang T, Li YW, Wang J, Beller M, Jiao H (2014) J Phys Chem C 118:4181

    Article  CAS  Google Scholar 

  38. Waugh KC (1992) Catal Today 15:51

    Article  CAS  Google Scholar 

  39. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333

    Article  CAS  Google Scholar 

  40. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Phys Chem Chem Phys 12:9909

    Article  CAS  Google Scholar 

  41. Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Catal Lett 26:373

    Article  CAS  Google Scholar 

  42. Rasmussen PB, Kazuta M, Chorkendorff I (1994) Surf Sci 318:267

    Article  CAS  Google Scholar 

  43. Nakamura J, Rodriguez JA, Campbell CT (1989) J Phys Condens Matter 1:SB149

    Article  CAS  Google Scholar 

  44. Schneider T, Hirschwald W (1992) Catal Lett 14:197

    Article  CAS  Google Scholar 

  45. Peebles DE, Goodman DW, White JM (1983) J Phys Chem 87:4378

    Article  CAS  Google Scholar 

  46. Vesselli E, de Rogatis L, Ding X, Baraldi A, Savio L, Vattuone L, Rocca M, Fornasiero P, Peressi M, Baldereschi A, Rosei R, Comelli G (2008) J Am Chem Soc 130:11417

    Article  CAS  Google Scholar 

  47. Bothra P, Periyasamy G, Pati SK (2013) Phys Chem Chem Phys 15:5701

    Article  CAS  Google Scholar 

  48. Wang W, Gong J (2010) Front Chem Sci Eng 5:2

    Google Scholar 

  49. Wambach J, Illing G, Freund HJ (1991) Chem Phys Lett 184:239

    Article  CAS  Google Scholar 

  50. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) J Am Chem Soc 135:11533

    Article  CAS  Google Scholar 

  51. Yao Y, Liu X, Hildebrandt D, Glasser D (2012) Chem Eng J 193–194:318

    Article  Google Scholar 

Download references

Acknowledgments

The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division (DE-AC02-98CH10886). P.J.R. is grateful to INTEVEP and IDB for support of the work carried out at UCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Ramírez, P.J., Stacchiola, D. et al. The Carburization of Transition Metal Molybdates (MxMoO4, M = Cu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation. Catal Lett 145, 1365–1373 (2015). https://doi.org/10.1007/s10562-015-1540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1540-5

Keywords

Navigation