Skip to main content
Log in

Syngas Conversion to Hydrocarbons on Zirconia-Supported Iron Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrogenation of CO to hydrocarbons is investigated over zirconia iron-based catalysts prepared by co-precipitation. These catalysts, in which the Fe-content varied between 0 and 100 %, were tested in the CO hydrogenation reaction under fixed reaction conditions (H2/CO = 2, T = 250 °C, P = 20 bar, GHSV = 0.0083 L/g.s.). The resulting activity data indicated that CO conversion is strongly dependent on the iron contents of the catalysts. The lowest CO conversion (<5 %) was obtained using Zr-rich catalysts (15Fe and 5Fe), and the highest CO conversion was obtained using Zr-free (100Fe) catalysts. For this catalyst, the CO conversion level reaches 38.5 %, with selectivities for the C2–C4 and C5+ hydrocarbons of 49.7 and 27.7 %, respectively. However, the activity profile of this catalyst slightly decreases with the time on-stream, indicating that it is progressively deactivated. If the activity is normalized to the iron content, the 95Fe and 85Fe catalysts display slightly better performances and are relatively stable for on stream periods of at least 48 h.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pour AN, Shahri SMK, Zamani Y, Zamanian A (2010) Promoter effect on the CO2-H2O formation during Fischer–Tropsch synthesis on iron-based catalysts. J Nat Gas Chem 19:193–197

    Article  CAS  Google Scholar 

  2. Lohitharn N, Goodwin JG Jr (2009) An investigation using SSITKA of chain growth on Fe and FeMnK Fischer–Tropsch synthesis catalysts. Catal Commun 10:758–762

    Article  CAS  Google Scholar 

  3. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  4. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology. Appl Catal A 311:66–75

    Article  CAS  Google Scholar 

  5. Feyzi M, Mirzaei AA (2010) Performance and characterization of iron-nickel catalysts for light olefin production. J Nat Gas Chem 19:422–430

    Article  CAS  Google Scholar 

  6. Ma X, Sun Q, Cao F, Ying W, Fang D (2006) Effects of the different supports on the activity and selectivity of iron-cobalt bimetallic catalyst for Fischer–Tropsch synthesis. J Nat Gas Chem 15:335–339

    Article  Google Scholar 

  7. Panpranot J, Goodwin JG Jr, Sayari A (2002) CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J Catal 211:530–539

    Article  CAS  Google Scholar 

  8. Dutta P, Elbashir NO, Manivannan A, Seehra MS, Roberts CB (2004) Characterization of Fischer–Tropsch cobalt-based catalytic systems (Co/SiO2 and Co/Al2O3) by X-ray diffraction and magnetic measurements. Catal Lett 98:203–210

    Article  CAS  Google Scholar 

  9. Sun S, Fujimoto K, Zhang Y, Tsubaki N (2003) A highly active and stable Fischer–Tropsch synthesis cobalt/silica catalyst with bimodal cobalt particle distribution. Catal Commun 4:361–364

    Article  Google Scholar 

  10. Wu B, Tian L, Xiang H, Zhang Z, Li Y-W (2005) Novel precipitated iron Fischer–Tropsch catalysts with Fe3O4 coexisting with α-Fe2O3. Catal Lett 102:211–218

    Article  CAS  Google Scholar 

  11. Xu J, Bartholomew C, Sudweeks J, Eggett D (2003) Design, synthesis, and catalytic properties of silica-supported, Pt-promoted iron Fischer–Tropsch catalysts. Top Catal 26:55–71

    Article  CAS  Google Scholar 

  12. Curtis V, Nicolaides CP, Coville NJ, Hildebrandt D, Glasser D (1999) The effect of sulfur on supported cobalt Fischer–Tropsch catalysts. Catal Today 49:33–40

    Article  CAS  Google Scholar 

  13. Jothimurugesan K, Goodwin JG Jr, Gangwal SK, Spivey JJ (2000) Development of Fe Fischer–Tropsch catalysts for slurry bubble column reactors. Catal Today 58:335–344

    Article  CAS  Google Scholar 

  14. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241

    Article  CAS  Google Scholar 

  15. De Smit E, Weckhuysen BM (2008) The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem Soc Rev 37:2758–2781

    Article  Google Scholar 

  16. Davis BH (2003) Fischer–Tropsch synthesis: relationship between iron catalyst composition and process variables. Catal Today 84:83–98

    Article  CAS  Google Scholar 

  17. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Binder/support effects on the activity and selectivity of iron catalysts in the Fischer–Tropsch synthesis. Ind Eng Chem Res 29:1588–1599

    Article  CAS  Google Scholar 

  18. Wang H, Yang Y, Xu J, Wang H, Ding M, Li Y (2010) Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer–Tropsch synthesis catalysts. J Mol Catal A 326:29–40

    Article  CAS  Google Scholar 

  19. Lohitharn N, Goodwin JG Jr (2008) Impact of Cr, Mn and Zr addition on Fe Fischer–Tropsch synthesis catalysis: investigation at the active site level using SSITKA. J Catal 257:142–151

    Article  CAS  Google Scholar 

  20. Al-Dossary M, Fierro JLG, Spivey JJ (2014) Cu-promoted Fe2O3/MgO-based Fischer–Tropsch catalysts of biomass-derived syngas. Ind Eng Chem Res 54:911–921

    Article  Google Scholar 

  21. Campos A, Lohitharn N, Roy A, Lotero E, Goodwin JG Jr, Spivey JJ (2010) An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts. Appl Catal A 375:12–16

    Article  CAS  Google Scholar 

  22. Li S, Meitzner GD, Iglesia E (2001) Structure and site evolution of iron oxide catalyst precursors during the Fischer–Tropsch synthesis. Journal of Physical Chemistry B 105:5743–5750

    Article  CAS  Google Scholar 

  23. Zhang H, Yang X, Zhou L, Su Y, Liu Z (2009) Conversion of syngas to higher alcohols over Cu-Fe-Zr catalysts induced by ethanol. J Nat Gas Chem 18:337–340

    Article  CAS  Google Scholar 

  24. Lohitharn N, Goodwin JG Jr, Lotero E (2008) Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. J Catal 255:104–113

    Article  CAS  Google Scholar 

  25. Qing M, Yang Y, Wu B, Xu J, Zhang C, Gao P, Li Y (2011) Modification of Fe–SiO2 interaction with zirconia for iron-based Fischer–Tropsch catalysts. J Catal 279:111–122

    Article  CAS  Google Scholar 

  26. All S, Chen B, Goodwin JG (1995) Zr promotion of Co/SiO2 for Fischer–Tropsch synthesis. J Catal 157:35–41

    Article  Google Scholar 

  27. Hong J, Chu W, Chernavskii PA, Khodakov AY (2010) Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer–Tropsch synthesis. Appl Catal A 382:28–35

    Article  CAS  Google Scholar 

  28. Jongsomjit B, Kittiruangrayub S, Praserthdam P (2007) Study of cobalt dispersion onto the mixed nano-SiO2–ZrO2 supports and its application as a catalytic phase. Mater Chem Phys 105:14–19

    Article  CAS  Google Scholar 

  29. Moradi GR, Basir MM, Taeb A, Kiennemann A (2003) Promotion of Co/SiO2 Fischer–Tropsch catalysts with zirconium. Catal Commun 4:27–32

    Article  CAS  Google Scholar 

  30. Ma X, Sun Q, Ying W, Fang D (2009) Effects of promoters on catalytic performance of Fe-Co/SiO2 catalyst for Fischer–Tropsch synthesis. J Nat Gas Chem 18:354–358

    Article  CAS  Google Scholar 

  31. Yang J, Sun Y, Tang Y, Liu Y, Wang H, Tian L, Wang H, Zhang Z, Xiang H, Li Y (2006) Effect of magnesium promoter on iron-based catalyst for Fischer–Tropsch synthesis. J Mol Catal A 245:26–36

    Article  CAS  Google Scholar 

  32. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Carbon oxide hydrogenation over silica-supported iron-based catalysts: influence of the preparation route. Appl Catal A 308:19–30

    Article  CAS  Google Scholar 

  33. Pérez-Alonso FJ, Granados ML, Ojeda M, Herranz T, Rojas S, Terreros P, Fierro JLG, Gracia M, Gancedo JR (2006) Relevance in the Fischer–Tropsch synthesis of the formation of Fe-O-Ce interactions on iron-cerium mixed oxide systems. J Phys Chem B 110:23870–23880

    Article  Google Scholar 

  34. Fischer F, Tropsch H (1930) Über die Entwicklung unserer Benzinsynthese aus Kohlenoxyd und Wasserstoff bei gewöhnlichem Druck. Brennstoff—Chemie 11:489

    CAS  Google Scholar 

  35. Cornell RM, Schwertmann U (1996) The iron oxides: structures, properties, reactions and uses. VCH Publishers, New York

    Google Scholar 

  36. Fischer F, Tropsch H (1923) Über die Herstellung synthetischer Ölgemische (Synthol) durch Aufbau aus Kohlenoxyd und Wasserstoff. Brennstoff—Chemie 4:276

    CAS  Google Scholar 

  37. Fischer F, Tropsch H (1926) The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff—Chemie 7:97

    CAS  Google Scholar 

  38. Briggs D, Seah MP (1990) Practical surface analysis. In: Briggs D, Seah MP (eds) Auger and X-ray photoelectron spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  39. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211–225

    Article  CAS  Google Scholar 

  40. Park J-Y, Lee Y-J, Khanna PK, Jun K-W, Bae JW, Kim YH (2010) Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: effect of particle size of iron oxide. J Mol Catal A 323:84–90

    Article  CAS  Google Scholar 

  41. Gallegos NG, Alvarez AM, Cagnoli MV, Bengoa JF, Marchetti SG, Mercader RC, Yeramian AA (1996) Selectivity to olefins of Fe/SiO2–MgO catalysts in the Fischer–Tropsch reaction. J Catal 161:132–142

    Article  CAS  Google Scholar 

  42. Den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, De Jong KP (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  43. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Van Diilen AJ, De Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  44. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 77:197–205

    Article  CAS  Google Scholar 

  45. Zhang H, Ma H, Zhang H, Ying W, Fang D (2012) Effects of Zr and K promoters on precipitated iron-based catalysts for Fischer–Tropsch synthesis. Catal Lett 142:131–137

    Article  CAS  Google Scholar 

  46. Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, De Jong KP (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 134:16207–16215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Al-Dossary gratefully acknowledges financial support from SABIC-Saudi Arabia for PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Al-Dossary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dossary, M., Ojeda, M. & Fierro, J.L.G. Syngas Conversion to Hydrocarbons on Zirconia-Supported Iron Catalysts. Catal Lett 145, 1126–1137 (2015). https://doi.org/10.1007/s10562-015-1504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1504-9

Keywords

Navigation