Skip to main content
Log in

Reusable 1,2,4-Triazolium Based Brønsted Acidic Room Temperature Ionic Liquids as Catalyst for Mannich Base Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Unprecedented examples of 1-alkyl-1,2,4-triazolium methanesulfonate based Brønsted acidic room temperature ionic liquids were synthesized and characterized. Their catalytic activity and efficiency in recyclability and reusability on one pot synthesis of halide substituted β-amino carbonyl compounds are reported.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Notes

  1. The pH was measured using Digital pH meter Deepvision Model 111/101. All RTILs (5 mmol) were dissolved in triply distilled water (10 mL) for pH measurement. pH instrument was calibrated with buffer pH 2.0.

References

  1. Meng X, Xiao SF (2014) Chem Rev 114:1521–1543

    Article  CAS  Google Scholar 

  2. Federsel JH (2013) Green Chem 153:105–3115

    Google Scholar 

  3. Horvath T, Anastas PT (2007) Chem Rev 107:2167–2168

    Article  CAS  Google Scholar 

  4. Pinaki LH, Bhadury S, Song B, Yang S (2012) RSC Adv 2:12525–12551

    Article  Google Scholar 

  5. Hallett PJ, Welton T (2011) Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  6. Hajipouri R, Rafiee F (2009) J Iran Chem Soc 6:647–678

    Article  Google Scholar 

  7. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  8. Erdmenger T, Sanchez GC, Vitz J, Hoogenboom R, Schubert SU (2010) Chem Soc Rev 39:3317–3333

    Article  CAS  Google Scholar 

  9. Greaves LT, Drummond JC (2008) Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  10. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Green Chem 9:1155–1157

    Article  CAS  Google Scholar 

  11. Miao W, Chan HT (2006) Acc Chem Res 39:897–908

    Article  CAS  Google Scholar 

  12. Wang R, Jin MC, Twamley B, Shreeve M (2006) J Inorg Chem 45:6396–6403

    Article  CAS  Google Scholar 

  13. Dupont J (2004) J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  14. Crosthwaite MJ, Sudhir N, Aki KV, Maginn JE, Rennecke BF (2004) J Phys Chem B 108:5113–5119

    Article  CAS  Google Scholar 

  15. Mirzaei RY, Twamley B, Shreeve MJ (2002) J Org Chem 67:9340–9345

    Article  CAS  Google Scholar 

  16. Seddon RK, Stark A, Torres M (2000) Pure Appl Chem 72:2275–2287

    Article  CAS  Google Scholar 

  17. Daily AL, Miller MK (2013) J Org Chem 78:4196–4201

    Article  CAS  Google Scholar 

  18. Luo J, Hu J, Saak W, Beckhaus R, Wittstock G, Vankelecom JF, Agert C, Conrad O (2011) J Mater Chem Rev 21:10426–10436

    Article  CAS  Google Scholar 

  19. Gnanamgari D, Moores A, Rajaseelan E, Crabtree HR (2007) Organometallics 26:1226–1230

    Article  CAS  Google Scholar 

  20. Xue H, Twamley B, Shreeve MJ (2004) J Org Chem 69:1397–1400

    Article  CAS  Google Scholar 

  21. Domling A, Wang W, Wang K (2012) Chem Rev 112:3083–3135

    Article  CAS  Google Scholar 

  22. Gu Y (2012) Green Chem 14:2091–2128

    Article  CAS  Google Scholar 

  23. Toure BB, Hall GD (2009) Chem Rev 109:4439–4486

    Article  CAS  Google Scholar 

  24. Subramanipillai GS (2013) J Chem Sci 125:467–482

    Article  Google Scholar 

  25. Azizi N, Torkiyan L, Saidi RM (2006) Org Lett 8:2079–2082

    Article  CAS  Google Scholar 

  26. Sahoo S, Joseph T, Halligudi BS (2006) J Mol Catal A 244:179–182

    Article  CAS  Google Scholar 

  27. Palaniappan S, John A, Amarnath A, Rao JV (2004) J Mol Catal A 218:47–53

    Article  CAS  Google Scholar 

  28. Bur KS, Martin FS (2001) Tetrahedron 57:3221–3242

    Article  CAS  Google Scholar 

  29. Pachamuthu PM, Shanthi K, Luqueand R, Ramanathan A (2013) Green Chem 15:2158–2166

    Article  CAS  Google Scholar 

  30. Amene YA, Reza N-J, Ali Sharifi, Saeed A, Mojtaba M (2013) J Chem Res 37:216–218

  31. Kumar A, Gupta KM, Kumar M (2012) Green Chem 14:290–295

    Article  CAS  Google Scholar 

  32. Maria DP, Bracco P, Castelhano FL, Bargeman G (2011) ACS Catal 1:70–75

    Article  Google Scholar 

  33. Feng CL, Sun WY, Tang JW, Xu JL, Lam LK, Zhou Z, Chan SA (2010) Green Chem 12:949–952

    Article  CAS  Google Scholar 

  34. Kidwai M, Bhatanagar D, Mishra KN, Bansal V (2008) Catal Commun 9:2547–2549

    Article  CAS  Google Scholar 

  35. Guoying Z, Tao J, Haixiang G, Buxing H, Jun H, Donghai S (2004) Green Chem 6:75–77

    Article  Google Scholar 

  36. Haixiang G, Buxing H, Junchun L, Tao J, Zhimin L, Weize W, Yanhong C, Jianmin Z (2004) Synth Commun 34:3083–3089

    Article  Google Scholar 

  37. Cai BY, Ting FY, Chuan BZ, Gang L (2009) J Ind Eng Chem 15:653–656

    Article  Google Scholar 

  38. Elango K, Srirambalaji R, Anantharaman G (2007) Tetrahedron Lett 48:9059–9062

    Article  CAS  Google Scholar 

  39. Anantharaman G, Elango K (2007) Synth React Inorg Met 37:719–723

    CAS  Google Scholar 

  40. Jizong L, Yanging P, Gonghua S (2005) Catal Lett 102:159–162

    Article  Google Scholar 

  41. Fang D, Luo J, Zhou XL, Liu ZL (2007) Catal Lett 116:76–80

    Article  CAS  Google Scholar 

  42. Sultan GE, Cinzia C, Zeynep T, Sunita R (2011) RSC Adv 1:761–764

    Article  Google Scholar 

  43. Rajendra S (2010) Catal Lett 139:17–25

    Article  Google Scholar 

  44. Caibo Y (2010) Synth Commun 40:3640–3647

    Article  Google Scholar 

  45. Fang D, Fei Z, Liu Z (2009) Catal Lett 10:1267–1270

    Google Scholar 

  46. Nemati F, Fakhaei SA, Amoozadeh A, Hayeniaz SY (2011) Synth Commun 41:3695–3702

    Article  CAS  Google Scholar 

  47. Nemati F, Bigdeli AM, Mahdavinia HG, Kiani H (2010) Green Chem Lett Rev 3:89–92

    Article  CAS  Google Scholar 

  48. Boumoud B, Zetchi A, Boumoud T, Debache A (2012) J Chem Pharm Res 4:2517–2521

    CAS  Google Scholar 

  49. Hua L, Zeng YH, Shao WH (2009) Tetrahedron Lett 50:6858–6860

    Article  Google Scholar 

  50. Ajeet A, Yelwande, Arbad RB, Lande KM (2011) J Korean Chem Soc 55:644–648

    Article  Google Scholar 

  51. Kozlov SN, Isaeva KR (1965) Zh Obshch Khim 35:285–288

    CAS  Google Scholar 

  52. Kozlov SN, Nikolaev DA (1961) Zh Obshch Khim 31:3894–3896

    CAS  Google Scholar 

  53. Kidwai M, Mishra KN, Bansal V, Kumar A, Mozumda S (2009) Tetrahedron Lett 50:1355–1358

    Article  CAS  Google Scholar 

  54. Abedini TJ, Eshghi H, Bakavoli M, Rahimizadeh M (2014) Res Chem Intermed 10:1–7

    Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology—Science and Engineering Research Board (DST-SERB, SR/FT/CS-60/2011), India for funding. Also the authors thank Dr. G. Anantharaman, Department of Chemistry, Indian Institute of Technology Kanpur for ESI-MS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elango Kandasamy.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Data

ESI mass spectra and NMR for all ionic liquids are available.

Supplementary material 1 (DOCX 4,256 kb)

Supplementary material 2 (DOC 3,204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, S., Kandasamy, E. Reusable 1,2,4-Triazolium Based Brønsted Acidic Room Temperature Ionic Liquids as Catalyst for Mannich Base Reaction. Catal Lett 144, 1507–1514 (2014). https://doi.org/10.1007/s10562-014-1312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1312-7

Keywords

Navigation