Skip to main content
Log in

Allograft selection for distal femur through cutting contour registration

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Allograft reconstruction is an acceptable procedure for the recovery of normal anatomy after the bone tumor resection. During the past few years, several automated methods have been proposed to select the best anatomically matching allograft from the virtual donor bone bank. The surface-based automated method uses the contralateral healthy bone to obtain the normal surface shape of the diseased bone, which could achieve good matching of the defect and the selected allograft. However, the surface-based method focuses on the matching of the whole bone so that the matching of the contact surface between the allograft and the recipient bone may not be optimal. To deal with the above problem, we propose a cutting contour based method for the allograft selection. Cutting contour from the recipient bone could reflect the structural information of the defect and is seldom influenced by tumor. Thus the cutting contour can be used as the matching template to find the optimal alignment of the recipient bone and the allograft. The proposed method is validated using the data of distal femurs where bone transplantation is commonly performed. Experimental results show that the proposed method generally outperforms the surface-based method within modest extra time. Overall, our contour-based method is an effective complementary technique for allograft selection in the virtual bone bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE trans pattern anal mach intell 14(2):239–256

    Article  Google Scholar 

  • Bou Sleiman H, Ritacco LE, Aponte-Tinao L, Muscolo DL, Nolte LP, Reyes M (2011) Allograft selection for transepiphyseal tumor resection around the knee using three-dimensional surface registration. Ann Biomed Eng 39(6):1720–1727

    Article  PubMed  Google Scholar 

  • Bousleiman H, Paul L, Nolte LP, Reyes M (2013) Comparative evaluation of pelvic allograft selection methods. Ann Biomed Eng 41(5):931–938

    Article  PubMed  Google Scholar 

  • Campanacci D, Chacon S, Mondanelli N, Beltrami G, Scoccianti G, Caff G, Frenos F, Capanna R (2012) Pelvic massive allograft reconstruction after bone tumour resection. Int Orthop 36(12):2529–2536

    Article  PubMed  PubMed Central  Google Scholar 

  • Cartiaux O, Paul L, Francq BG, Banse X, Docquier PL (2014) Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery. Ann Biomed Eng 42(1):205–213

    Article  PubMed  Google Scholar 

  • Chen Y, Medioni G (1991) Object modeling by registration of multiple range images. In: IEEE international conference on robotics and automation, pp 2724–2729

  • de Vet HCW, Mokkink LB, Terwee CB, Hoekstra OS, Knol DL (2013) Clinicians are right not to like Cohen’s \(\kappa\). BMJ (Clinical research ed.) 346 (April), p f2125

  • Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the KITTI vision Benchmark suite. In: Conference on computer vision and pattern recognition (CVPR)

  • Lehmann EL, D’Abrera HJM (2006) Nonparametrics: statistical methods based on ranks. Springer, New York

    Google Scholar 

  • Makridis KG, Ahmad MA, Kanakaris NK, Fragkakis EM, Giannoudis PV (2012) Reconstruction of iliac crest with bovine cancellous allograft after bone graft harvest for symphysis pubis arthrodesis. Int Orthop 36(8):1701–1707

    Article  PubMed  PubMed Central  Google Scholar 

  • Matejovsky Z, Kofranek I (2006) Massive allografts in tumour surgery. Int Orthop 30(6):478–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA (2000) Survivorship and radiographic analysis of knee osteoarticular allografts. Clin Orthop Relat Res 373:73–79

    Article  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA, Ranalletta M (2004a) Partial epiphyseal preservation and intercalary allograft reconstruction in high-grade metaphyseal osteosarcoma of the knee. J Bone Joint Surg 86(12):2686–2693

    Article  PubMed  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA, Ranalletta M (2005) Use of distal femoral osteoarticular allografts in limb salvage surgery. J Bone Joint Surg 87(11):2449–2455

    PubMed  Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA, Ranalletta M (2004b) Distal femur osteoarticular allograft reconstruction after grade III open fractures in pediatric patients. J Orthop Trauma 18(5):312–315

    Article  PubMed  Google Scholar 

  • Paul L, Docquier PL, Cartiaux O, Cornu O, Delloye C, Banse X (2008) Inaccuracy in selection of massive bone allograft using template comparison method. Cell Tissue Bank 9(2):83–90

    Article  PubMed  Google Scholar 

  • Paul L, Docquier PL, Cartiaux O, Cornu O, Delloye C, Banse X (2010) Selection of massive bone allografts using shape-matching 3-dimensional registration. Acta Orthop 81(2):250–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramseier LE, Malinin TI, Temple HT, Mnaymneh WA, Exner GU (2006) Allograft reconstruction for bone sarcoma of the tibia in the growing child. J Bone Joint Surg (Br) 88(1):95–99

    Article  CAS  Google Scholar 

  • Ritacco LE, Espinoza OAA, Aponte-Tinao LA, Muscolo DL, de Quirós FG, Nozomu I (2009) Three-dimensional morphometric analysis of the distal femur: a validity method for allograft selection using a virtual bone bank. Stud Health Technol Inform 160(Pt 2):1287–1290

    Google Scholar 

  • Tryon WW, Lewis C (2008) An inferential confidence interval method of establishing statistical equivalence that corrects Tryon’s (2001) reduction factor. Psychol Methods 13(3):272–277

    Article  PubMed  Google Scholar 

  • Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL (2013) A comparison of Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples. BMC Med Res Methodol 13:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Fu J, Wang Z, Li X, Li J, Pei Y, Pei G, Li D, Guo Z, Fan H (2015) Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology. Int Orthop 39(6):1151–1158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers and the editor for their suggestions on improving the quality of this article. This work is partly supported by National Natural Science Foundation of China with Grant Nos. 61172125 and 61132007, and is partly supported by the Joint Fund of Civil Aviation Research by National Natural Science Foundation of China and Civil Aviation Administration of China with Grant No. U1533132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zhang, Y., Zhang, Q. et al. Allograft selection for distal femur through cutting contour registration. Cell Tissue Bank 17, 699–711 (2016). https://doi.org/10.1007/s10561-016-9580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9580-7

Keywords

Navigation