Skip to main content

Advertisement

Log in

Isoimperatorin Inhibits Angiogenesis by Suppressing VEGFR2 Signaling Pathway

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis involves in many pathological processes, including tumor metastasis, diabetic retinopathy, and rheumatoid arthritis. Therefore, identifying therapeutic drugs that target angiogenesis may be a promising strategy for disease treatment. Isoimperatorin is a furanocoumarin with anti-inflammatory and anti-microbial effects. However, the impacts of isoimperatorin on angiogenesis and its underlying mechanisms remain unclear. This study aimed to verify its effects on vascular endothelial growth factor (VEGF)-induced endothelial angiogenesis.

Methods

We employed various assays including 5-ethynyl-2′-deoxyuridine incorporation assay, transwell migration assay, wound healing assay, tube formation assay, and Western blot to evaluate the effects of isoimperatorin on angiogenesis in vitro. Additionally, we utilized Western blot and immunofluorescence analysis to examine the activation of vascular endothelial growth factor receptor (VEGFR) 2 and its downstream signaling pathways following isoimperatorin treatment. To further validate the anti-angiogenic effects of isoimperatorin in vivo, we conducted a matrigel plug assay and established an orthotopic tumor model.

Results

We demonstrated that pretreatment with isoimperatorin inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation. Isoimperatorin also suppressed angiogenesis in vivo in a matrigel plug assay and in an orthotopic tumor model. Our results revealed that isoimperatorin exhibited anti-angiogenic effects via inhibiting VEGFR2 and its downstream signaling pathways activation.

Conclusions

Our study showed that isoimperatorin suppressed angiogenesis by targeting the VEGFR2 signaling pathway and could be a potential therapeutic agent for targeting angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon reasonable request. The unprocessed Western blot images were in the supplementary data.

References

  1. Liu Y, Ji X, Kang N, Zhou J, Liang X, Li J, et al. Tumor necrosis factor alpha inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer. Cell Death Dis. 2020;11(11):993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qin S, Li Q, Gu S, Chen X, Lin L, Wang Z, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol. 2021;6(7):559–68.

    Article  PubMed  Google Scholar 

  3. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. 2018;19(4).

  4. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25.

    Article  CAS  PubMed  Google Scholar 

  5. Cho HD, Lee KW, Won YS, Kim JH, Seo KI. Cultivated orostachys japonicus extract inhibits VEGF-induced angiogenesis via regulation of VEGFR2 signaling pathway in vitro and in vivo. J Ethnopharmacol. 2020;256:112664.

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Peng J, Zhao S, Zhong Y, Wang Y, Hu J, et al. Tussilagone suppresses angiogenesis by inhibiting the VEGFR2 Signaling Pathway. Front Pharmacol. 2019;10:764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu GS, Tang LY, Lv DL, Jiang M. Total flavones of Abelmoschus manihot exhibits pro-angiogenic activity by activating the VEGF-A/VEGFR2-PI3K/Akt Signaling Axis. Am J Chin Med. 2018;46(3):567–83.

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang J, Jiang H, Fang H, Cui W, Cai D. Isoimperatorin ameliorates osteoarthritis by downregulating the mammalian target of rapamycin C1 signaling pathway. Mol Med Rep. 2017;16(6):9636–44.

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Zhang Y, Zeng Y, Ge S, Sun X, Jia M, et al. Isoimperatorin reduces the effective dose of dexamethasone in a murine model of asthma by inhibiting mast cell activation. Phytother Res. 2020;34(11):2985–97.

    Article  CAS  PubMed  Google Scholar 

  10. Wijerathne CUB, Seo CS, Song JW, Park HS, Moon OS, Won YS, et al. Isoimperatorin attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int Immunopharmacol. 2017;49:67–76.

    Article  CAS  PubMed  Google Scholar 

  11. Lai Y, Han T, Zhan S, Jiang Y, Liu X, Li G. Antiviral activity of Isoimperatorin against Influenza A Virus in vitro and its inhibition of neuraminidase. Front Pharmacol. 2021;12:657826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tong K, Xin C, Chen W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol Lett. 2017;13(1):518–24.

    Article  CAS  PubMed  Google Scholar 

  13. Yang HB, Gao HR, Ren YJ, Fang FX, Tian HT, Gao ZJ, et al. Effects of isoimperatorin on proliferation and apoptosis of human gastric carcinoma cells. Oncol Lett. 2018;15(5):7993–8.

    PubMed  PubMed Central  Google Scholar 

  14. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2(3):481–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

    Article  CAS  PubMed  Google Scholar 

  16. Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 2019;129(9):3807–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009;12(3):267–74.

    Article  PubMed  Google Scholar 

  18. Zhong Y, Yin B, Ye Y, Dekhel O, Xiong X, Jian Z, et al. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol. 2021;341:113690.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-Mediated physiological function and pathological role. Front Cell Dev Biol. 2020;8:599281.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cheng K, Liu CF, Rao GW. Anti-angiogenic agents: a review on vascular endothelial growth factor Receptor-2 (VEGFR-2) inhibitors. Curr Med Chem. 2021;28(13):2540–64.

    Article  CAS  PubMed  Google Scholar 

  21. Manni S, Kisko K, Schleier T, Missimer J, Ballmer-Hofer K. Functional and structural characterization of the kinase insert and the carboxy terminal domain in VEGF receptor 2 activation. FASEB J. 2014;28(11):4914–23.

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Deng W, Qin Q, Lin Y, Liu T, Mo G, et al. Isoimperatorin attenuates bone loss by inhibiting the binding of RANKL to RANK. Biochem Pharmacol. 2023;211:115502.

    Article  CAS  PubMed  Google Scholar 

  23. Ma T, Liu P, Wei J, Zhao M, Yao X, Luo X, et al. Imperatorin alleviated endometriosis by inhibiting the activation of PI3K/Akt/NF-kappaB pathway in rats. Life Sci. 2021;274:119291.

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Xu W, Yang Q, Zhang H, Wan L, Xin B, et al. Imperatorin alleviates cancer cachexia and prevents muscle wasting via directly inhibiting STAT3. Pharmacol Res. 2020;158:104871.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Hubei Province (2020CFB429).

Author information

Authors and Affiliations

Authors

Contributions

YTX: conducting the experiments, manuscript writing. DX: data analysis. SD: Supervision, study design, manuscript revision. MLL: Supervision, manuscript revision.

Corresponding authors

Correspondence to Shan Deng or Minglu Liang.

Ethics declarations

Ethics Approval

Approval for all animal experimental procedures was obtained from the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (permit number: [2023] IACUC Number 3393). All animal experimental procedures were conducted in strict adherence to applicable institutional and national regulations and guidelines.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xia, D., Deng, S. et al. Isoimperatorin Inhibits Angiogenesis by Suppressing VEGFR2 Signaling Pathway. Cardiovasc Drugs Ther (2024). https://doi.org/10.1007/s10557-024-07561-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-024-07561-5

Keywords

Navigation