Skip to main content
Log in

Isopimpinellin extends antiangiogenic effect through overexpression of miR-15b-5p and downregulating angiogenic stimulators

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Angiogenesis is the formation of new blood vessels from an existing vasculature through a series of processes such as activation, proliferation, and directed migration of endothelial cells. Angiogenesis is instrumental in the metastatic spread of tumors. Isopimpinellin, a furanocoumarin group of phytochemicals, is an anticarcinogenic agent. However, no studies have proven its antiangiogenic effects. The current study thus aimed to screen the antiangiogenic effect of isopimpinellin.

Methods and results

Human Umblical Vein Endothelial Cell (HUVEC) as an in vitro model and zebrafish embryos as an in vivo model was used in this study. The experimental results showed that isopimpinellin effectively inhibited HUVEC proliferation, invasion, migration, and tube formation, which are the key steps in angiogenesis by markedly suppressing the expression of pro-angiogenic genes VEGF, AKT, and HIF-1α. In addition, isopimpinellin exerts its anti-angiogenic effect through the regulation of miR-15b-5p and miR-542-3p. Furthermore, in zebrafish embryos, isopimpinellin inhibited the development of intersegmental vessels (ISVs) through the significant downregulation of all pro-angiogenic genes vegf, vegfr2, survivin, angpt-1, angpt-2, and tie-2.

Conclusion

Collectively, these experimental findings offer novel insights into the antiangiogenic nature of isopimpinellin and open new avenues for therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the study are available on request from the corresponding author.

References

  1. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    CAS  PubMed  Google Scholar 

  2. Adair TH, Jean-Pierre M (2011) Angiogenesis. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  3. Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H et al (2018) Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233:2949–2965

    CAS  PubMed  Google Scholar 

  4. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17:457

    PubMed  Google Scholar 

  5. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  6. Kadioglu O, Seo EJ, Efferth T (2013) Targeting angiogenesis by phytochemicals. Med Aromat Plants 2:134

    Google Scholar 

  7. Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R (2020) Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects. Int J Mol Sci 21(16):5622

    CAS  PubMed Central  Google Scholar 

  8. Melough MM, Cho E, Chun OK (2018) Furocoumarins: a review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem Toxicol 113:99–107

    CAS  Google Scholar 

  9. Kleiner HE, Reed MJ, DiGiovanni J (2003) Naturally occurring coumarins inhibit human cytochromes P450 and block benzo[a]pyrene and 7,12-dimethylbenz[a] anthracene DNA adduct formation in MCF-7 cells. Chem Res Toxicol 16:415–422

    CAS  PubMed  Google Scholar 

  10. Prince M, Campbell CT, Robertson TA, Wells AJ, Kleiner HE (2006) Naturally occurring coumarins inhibit 7,12-dimethylbenz[a]anthracene DNA adduct formation in mouse mammary gland. Carcinogenesis 27:1204–1213

    CAS  PubMed  Google Scholar 

  11. Wu Y et al (2014) MiR-152 reduces human umbilical vein endothelial cell proliferation and migration by targeting ADAM17. FEBS Lett 588:2063–2069

    CAS  PubMed  Google Scholar 

  12. Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. BioEssays 25:904–912

    CAS  PubMed  Google Scholar 

  13. Crawford AD, Esguerra CV, de Witte PAM (2008) Fishing for drugs from nature: Zebrafish as a technology platform for natural product discovery. Planta Med 74:624–632

    CAS  PubMed  Google Scholar 

  14. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo Int. J Exp Pathol 85:233–248

    CAS  Google Scholar 

  15. Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2):218–223

    CAS  PubMed  Google Scholar 

  16. Arunachalam G, Lakshmanan AP, Samuel SM, Triggle CR, Ding H (2016) Molecular Interplay between microRNA-34a and Sirtuin1 in hyperglycemia-mediated impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther 356:314–323

    CAS  PubMed  Google Scholar 

  17. Qu K et al (2015) MicroRNAs: key regulators of endothelial progenitor cell functions. Clin Chim Acta 448:65–73

    CAS  PubMed  Google Scholar 

  18. Mirossay L, Varinská L, Mojžiš J (2017) Antiangiogenic effect of flavonoids and chalcones: an update. Int J Mol Sci 19(1):27

    PubMed Central  Google Scholar 

  19. Folkman J (1974) Proceedings: tumor angiogenesis factor. Cancer Res 34(8):2109–2113

    CAS  PubMed  Google Scholar 

  20. Kubrak T, Bogucka-Kocka A, Komsta Ł, Załuski D, Bogucki J, Galkowski D, Kaczmarczyk R, Feldo M, Adamczyk-Cioch M, Kocki J (2017) Modulation of multidrug resistance gene expression by coumarin derivatives in human leukemic cells. Oxid Med Cell Longev. https://doi.org/10.1155/2017/5647281

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74(2–3):172–183

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong ZF, Hoi PM, Wu GS, Xu ZT, Tan W, Chen XP et al (2012) Anti-angiogenic effect of furanodiene on HUVECs in vitro and on zebrafish in vivo. JEthnopharmacol 141:721–727

    CAS  Google Scholar 

  23. Bruce RZ (1998) Angiogenesis and tumor metastasis. Annu Rev Med 49(1):407

    Google Scholar 

  24. Eccles SA (2004) Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int J Dev Biol 48:583–598

    CAS  PubMed  Google Scholar 

  25. Tsai SC, Liu YC, Li CP, Huang TS, Lee Sesamin CC (2006) inhibits vascular endothelial cell growth and angiogenic activity of lung adenocarcinoma cells. J Cancer Mol 2:199–205

    CAS  Google Scholar 

  26. Robertson AL, Ogryzko NV, Henry KM et al (2016) Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen. Dis Model Mech 9(6):621–632

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, Maity A (2006) Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol Cancer Res 4(7):471–479

    CAS  PubMed  Google Scholar 

  28. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    CAS  PubMed  Google Scholar 

  29. Varghese E, Liskova A, Kubatka P, Mathews Samuel S, Büsselberg D (2020) Anti-angiogenic effects of phytochemicals on miRNA regulating breast cancer progression. Biomolecules 10(2):191

    CAS  PubMed Central  Google Scholar 

  30. Jin C, Zhao Y, Yu L, Xu S, Fu G (2013) MicroRNA-21 mediates the rapamycin-induced suppression of endothelial proliferation and migration. FEBS Lett 587:378–385

    CAS  PubMed  Google Scholar 

  31. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173

    CAS  PubMed  Google Scholar 

  32. Chan LS, Yuen PY, Wong YY, Wong RN (2013) MicroRNA-15b contributes to ginsen-oside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol 86:392–400

    CAS  PubMed  Google Scholar 

  33. Zheng X, Chopp M, Lu Y, Buller B, Jiang F (2013) MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 329:146–154

    CAS  PubMed  Google Scholar 

  34. He T, Qi F, Jia L, Wang S, Song N, Guo L, Fu Y, Luo Y (2014) MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol 232(5):499–508

    CAS  PubMed  Google Scholar 

  35. He T et al (2015) Tumor cell-secreted angiogenin induces angiogenic activity of endothelial cells by suppressing miR-542-3p. Cancer Lett 368(1):115–12538

    CAS  PubMed  Google Scholar 

  36. Kaneda H, Arao T, Matsumoto K et al (2011) Activin A inhibits vascular endothelial cell growth and suppresses tumour angiogenesis in gastric cancer. Br J Cancer 105:1210–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Panopoulou E, Murphy C, Rasmussen H et al (2005) Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and anti-angiogenic mechanisms. Cancer Res 65:1877–1886

    CAS  PubMed  Google Scholar 

  38. Breit S, Ashman K, Wilting J et al (2000) The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res 60:4596–4601

    CAS  PubMed  Google Scholar 

  39. Wang B, Chen S, Zhao J, Xiang B, Gu X, Zou F, Zhang Z (2019) ADAMTS-1 inhibits angiogenesis via the PI3K/Akt-eNOS-VEGF pathway in lung cancer cells. Transl Cancer Res 8(8):2725–3273

    CAS  Google Scholar 

  40. Stack MS, Gately S, Bafeti LM, Enghild JJ, Soff GA (1999) Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem J 340:77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Oncogene 19(39):4549–4552

    CAS  PubMed  Google Scholar 

  42. Sheng J, Xu Z (2016) Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin 48(5):399–410

    CAS  PubMed  Google Scholar 

  43. Bottazzi B, Garlanda C, Salvatori G, Jeannin P, Manfredi A, Mantovani A (2006) Pentraxins as a key component of innate immunity. Curr Opin Immunol 18:10–15

    CAS  PubMed  Google Scholar 

  44. Grant K, Loizidou M, Taylor I (2006) Endothelin. In: Handbook of biologically active peptides. Academic Press, New York, pp 447–452

  45. Oxmann D, Held-Feindt J, Stark A et al (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27:3567–3575

    CAS  PubMed  Google Scholar 

  46. Paramasivam A, Kalaimangai M, Sambantham S, Anandan B, Jayaraman G (2012) Anti-angiogenic activity of thymoquinone by the down-regulation of VEGF using zebrafish (Danio rerio) model. Biomed Prev Nutr 2(3):169–173

    Google Scholar 

  47. Chen K, Wang C, Fan Y et al (2018) Identification of mundoserone by zebrafish in vivo screening as a natural product with anti-angiogenic activity. Exp Ther Med 16(6):4562–4568

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown JL, Cao ZA, Pinzon-Ortiz M, Kendrew J, Reimer C, Wen S, Zhou JQ, Tabrizi M, Emery S, McDermott B et al (2010) A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol Cancer Ther 9:145–156

    CAS  PubMed  Google Scholar 

  49. Hashizume H, Falcon BL, Kuroda T, Baluk P, Coxon A, Yu D, Bready JV, Oliner JD, McDonald DM (2010) Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 70:2213–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang H, Lai JY, Do J, Liu D, Li L, Del Rosario J, Doppalapudi VR, Pirie-Shepherd S, Levin N, Bradshaw C et al (2010) Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth. Clin Cancer Res 17:1001–1011

    Google Scholar 

  51. Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2(9):a006550

    PubMed  Google Scholar 

  52. Ma A, Lin R, Chan PK, Leung JC, Chan LY, Meng A et al (2007) The role of survivin in angiogenesis during zebrafish embryonic development. BMC Dev Biol 7:50

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded and supported by the Department of Science and Technology (DST), Science and Engineering Research Board (SERB), Early Career Research (ECR) Grant (DST No.: ECR/2015/000265). The authors also thank DST-FIST, UGC-SAP and DHR-MRU for the infrastructural facility.

Funding

This work was supported by Science and Engineering Research Board (SERB), Early Career Research (ECR) Grant (DST No.: ECR/2015/000265).

Author information

Authors and Affiliations

Authors

Contributions

SB: conceptualization, methodology, investigation, writing—original draft. VR: conceptualization, methodology. SS: conceptualization, writing—review and editing. AB: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Anandan Balakrishnan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Ethical approval

The ethical clearance was granted by institutional animal ethical committee with the approval number [Approval No.: 01/36/2015].

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagavatheeswaran, S., Ramachandran, V., Shanmugam, S. et al. Isopimpinellin extends antiangiogenic effect through overexpression of miR-15b-5p and downregulating angiogenic stimulators. Mol Biol Rep 49, 279–291 (2022). https://doi.org/10.1007/s11033-021-06870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06870-4

Keywords

Navigation