Skip to main content

Advertisement

Log in

The Role of Macrophages in Atherosclerosis: Participants and Therapists

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater. 2023;10:rbac103. https://doi.org/10.1093/rb/rbac103

    Article  CAS  PubMed  Google Scholar 

  2. Sun X, Lyu L, Zhong X, Ni Z, Xu Q. Application of genetic cell-lineage tracing technology to study cardiovascular diseases. J Mol Cell Cardiol. 2021;156:57–68. https://doi.org/10.1016/j.yjmcc.2021.03.006

    Article  CAS  PubMed  Google Scholar 

  3. Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023; https://doi.org/10.1038/s41577-023-00848-y

  4. Tomas L, Prica F, Schulz C. Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis. Front Immunol. 2021;12:718432. https://doi.org/10.3389/fimmu.2021.718432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang L. Contribution of resident and recruited macrophages in vascular physiology and pathology. Curr Opin Hematol. 2018;25(3):196–203. https://doi.org/10.1097/MOH.0000000000000421

    Article  CAS  PubMed  Google Scholar 

  6. Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–72. https://doi.org/10.1038/nm.3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat Commun. 2020;11(1):4549. https://doi.org/10.1038/s41467-020-18287-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Susser LI, Rayner KJ. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest. 2022;132(9) https://doi.org/10.1172/JCI157011

  9. Tong Y, Cai L, Yang S, et al. The research progress of vascular macrophages and atherosclerosis. Oxidative Med Cell Longev. 2020;2020:7308736. https://doi.org/10.1155/2020/7308736

    Article  CAS  Google Scholar 

  10. Wu J, He S, Song Z, et al. Macrophage polarization states in atherosclerosis. Front Immunol. 2023;14:1185587. https://doi.org/10.3389/fimmu.2023.1185587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Ma CR, Hua YQ, et al. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci. 2021;276:118957. https://doi.org/10.1016/j.lfs.2020.118957

    Article  CAS  PubMed  Google Scholar 

  12. Eshghjoo S, Kim DM, Jayaraman A, Sun Y, Alaniz RC. Macrophage polarization in atherosclerosis. Genes (Basel). 2022;13(5) https://doi.org/10.3390/genes13050756

  13. Lee J, Choi J-H. Deciphering macrophage phenotypes upon lipid uptake and atherosclerosis. Immune Netw. 2020;20(3):e22. https://doi.org/10.4110/in.2020.20.e22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806. https://doi.org/10.1161/CIRCRESAHA.119.312321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53. https://doi.org/10.1016/j.imbio.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  16. Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal. 2020;70:109569. https://doi.org/10.1016/j.cellsig.2020.109569

    Article  CAS  PubMed  Google Scholar 

  17. de-Brito NM, Duncan-Moretti J, da-Costa HC, et al. Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochim Biophys Acta Mol. Cell Res. 2020;1867(2):118604. https://doi.org/10.1016/j.bbamcr.2019.118604

    Article  CAS  Google Scholar 

  18. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017;62:353–64. https://doi.org/10.1007/978-3-319-54090-0_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Theofilis P, Oikonomou E, Tsioufis K, Tousoulis D. The role of macrophages in atherosclerosis: pathophysiologic mechanisms and treatment considerations. Int J Mol Sci. 2023;24(11) https://doi.org/10.3390/ijms24119568

  21. Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost. 2017;117(1) https://doi.org/10.1160/TH16-08-0593

  22. Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010;107(6):737–46. https://doi.org/10.1161/CIRCRESAHA.109.215715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol. 2012;23(5):453–61. https://doi.org/10.1097/MOL.0b013e328356b145

    Article  CAS  PubMed  Google Scholar 

  24. Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33. https://doi.org/10.1161/ATVBAHA.119.312802

    Article  CAS  PubMed  Google Scholar 

  25. Skuratovskaia D, Vulf M, Khaziakhmatova O, et al. Tissue-specific role of macrophages in noninfectious inflammatory disorders. Biomedicines. 2020;8(10) https://doi.org/10.3390/biomedicines8100400

  26. Xie Y, Chen H, Qu P, et al. Novel insight on the role of macrophages in atherosclerosis: focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol. 2022;113(Pt A):109260. https://doi.org/10.1016/j.intimp.2022.109260

    Article  CAS  PubMed  Google Scholar 

  27. Jinnouchi H, Guo L, Sakamoto A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. 2020;77(10):1919–32. https://doi.org/10.1007/s00018-019-03371-3

    Article  CAS  PubMed  Google Scholar 

  28. Lin P, Ji H-H, Li Y-J, Guo S-D. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797. https://doi.org/10.3389/fmolb.2021.679797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi JR, Zhao DR, Zhao L, Luo F, Yang M. MiR-520a-3p inhibited macrophage polarization and promoted the development of atherosclerosis via targeting UVRAG in apolipoprotein E knockout mice. Front Mol Biosci. 2020;7:621324. https://doi.org/10.3389/fmolb.2020.621324

    Article  CAS  PubMed  Google Scholar 

  30. Ouimet M, Ediriweera HN, Gundra UM, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 2015;125(12):4334–48. https://doi.org/10.1172/JCI81676

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1. J Cell Physiol. 2021;236(3):2008–22. https://doi.org/10.1002/jcp.29987

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Di Q, Liu H, et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell Mol Immunol. 2022;19(4):540–53. https://doi.org/10.1038/s41423-022-00841-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng M, Cao Y, Zhang Y, et al. HnRNPA2B1 aggravates inflammation by promoting M1 macrophage polarization. Nutrients. 2023;15(7) https://doi.org/10.3390/nu15071555

  34. Li J, Yang S, Han Z, et al. Akt2 inhibitor promotes M2 macrophage polarization in rats with periapical inflammation by reducing miR-155-5p expression. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(4):568–76. https://doi.org/10.12122/j.issn.1673-4254.2023.04.09

    Article  CAS  PubMed  Google Scholar 

  35. Bai L, Li Z, Li Q, et al. Mediator 1 is atherosclerosis protective by regulating macrophage polarization. Arterioscler Thromb Vasc Biol. 2017;37(8):1470–81. https://doi.org/10.1161/ATVBAHA.117.309672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song F, Li J-Z, Wu Y, et al. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism. Mol Ther Nucleic Acids. 2021;26:1303–17. https://doi.org/10.1016/j.omtn.2021.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin E-S, Hsu Y-A, Chang C-Y, et al. Ablation of galectin-12 inhibits atherosclerosis through enhancement of M2 macrophage polarization. Int J Mol Sci. 2020;21(15) https://doi.org/10.3390/ijms21155511

  38. Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: implications for treatment. Eur J Pharmacol. 2017;816:14–24. https://doi.org/10.1016/j.ejphar.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  39. Park S-J, Lee K-P, Kang S, et al. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal. 2014;26(10):2249–58. https://doi.org/10.1016/j.cellsig.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Qin Y, Wan X, et al. Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities. J Transl Med. 2021;19(1):62. https://doi.org/10.1186/s12967-021-02727-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Xiao S, Li Q. Pravastatin polarizes the phenotype of macrophages toward M2 and elevates serum cholesterol levels in apolipoprotein E knockout mice. J Int Med Res. 2018;46(8):3365–73. https://doi.org/10.1177/0300060518787671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma Y, Zhang Y, Qiu C, et al. Rivaroxaban suppresses atherosclerosis by inhibiting FXa-induced macrophage M1 polarization-mediated phenotypic conversion of vascular smooth muscle cells. Front Cardiovasc Med. 2021;8:739212. https://doi.org/10.3389/fcvm.2021.739212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brenner C, Franz WM, Kühlenthal S, et al. DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages. Int J Cardiol. 2015;199:163–9. https://doi.org/10.1016/j.ijcard.2015.07.044

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Ma D, Wang Y, et al. Herb pair attenuates atherosclerosis in ApoE-/- mice by regulating the M1/M2 and Th1/Th2 immune balance and activating the STAT6 signaling pathway. Evid Based Complementary Altern Med. 2022;2022:7421265. https://doi.org/10.1155/2022/7421265

    Article  Google Scholar 

  45. Xie Y, Tian L, Fang Z, et al. Bushen Kangshuai tablet inhibits progression of atherosclerosis by intervening in macrophage autophagy and polarization. J Tradit Chin Med = Chung I Tsa Chih Ying Wen Pan. 2020;40(1):28–37.

    PubMed  Google Scholar 

  46. Song M-Y, Cho H, Lee S, Lee KH, Kim W. Attenuates atherosclerosis by regulating cholesterol metabolism and inducing M2 macrophage polarization. Life. 2022;12(2) https://doi.org/10.3390/life12020197

  47. Wang X, Du H, Li X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int Immunopharmacol. 2022;102:108413. https://doi.org/10.1016/j.intimp.2021.108413

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Lei H-t, Cao L, et al. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int Immunopharmacol. 2018;55:120–7. https://doi.org/10.1016/j.intimp.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  49. Jin Z, Li J, Pi J, et al. Geniposide alleviates atherosclerosis by regulating macrophage polarization via the FOS/MAPK signaling pathway. Biomed Pharmacother. 2020;125:110015. https://doi.org/10.1016/j.biopha.2020.110015

    Article  CAS  PubMed  Google Scholar 

  50. Luo Y, Lu S, Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging. 2020;12(2):1704–24. https://doi.org/10.18632/aging.102708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Shi X, Han J, et al. Convallatoxin promotes M2 macrophage polarization to attenuate atherosclerosis through PPARγ-Integrin αβ signaling pathway. Drug Des Devel Ther. 2021;15:803–12. https://doi.org/10.2147/DDDT.S288728

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang F, Li M, Zhang A, et al. PCSK9 modulates macrophage polarization-mediated ventricular remodeling after myocardial infarction. J Immunol Res. 2022;2022:7685796. https://doi.org/10.1155/2022/7685796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin B, Yang J, Song Y, Dang G, Feng J. Exosomes and atherogenesis. Front Cardiovasc Med. 2021;8:738031. https://doi.org/10.3389/fcvm.2021.738031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yao J, Cai L, Chen Y, et al. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal. 2022;20(1):153. https://doi.org/10.1186/s12964-022-00949-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in ageing and motor neurone disease: biogenesis, uptake mechanisms, modifications in disease and uses in the development of biomarkers and therapeutics. Cells. 2021;10(11) https://doi.org/10.3390/cells10112930

  56. Yang K, Xiao Q, Niu M, Pan X, Zhu X. Exosomes in atherosclerosis: convergence on macrophages. Int J Biol Sci. 2022;18(8):3266–81. https://doi.org/10.7150/ijbs.71862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shan X, Zhang C, Mai C, et al. The biogenesis, biological functions, and applications of macrophage-derived exosomes. Front Mol Biosci. 2021;8:715461. https://doi.org/10.3389/fmolb.2021.715461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. https://doi.org/10.1016/j.celrep.2020.107881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng X, Zhou H, Zhou Y, Song C. M2 Macrophage-derived exosomes inhibit apoptosis of HUVEC cell through regulating miR-221-3p expression. Biomed Res Int. 2022;2022:1609244. https://doi.org/10.1155/2022/1609244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu Y, Zhang WL, Gu JJ, et al. Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells. Eur Rev Med Pharmacol Sci. 2020;24(12):7039–50. https://doi.org/10.26355/eurrev_202006_21697

    Article  CAS  PubMed  Google Scholar 

  61. Ren L, Chen S, Yao D, Yan H. OxLDL-stimulated macrophage exosomes promote proatherogenic vascular smooth muscle cell viability and invasion via delivering miR-186-5p then inactivating SHIP2 mediated PI3K/AKT/mTOR pathway. Mol Immunol. 2022;146:27–37. https://doi.org/10.1016/j.molimm.2022.02.018

    Article  CAS  PubMed  Google Scholar 

  62. Chen F, Li J, She J, Chen T, Yuan Z. Exosomal microRNA-16-5p from macrophage exacerbates atherosclerosis via modulating mothers against decapentaplegic homolog 7. Microvasc Res. 2022;142:104368. https://doi.org/10.1016/j.mvr.2022.104368

    Article  CAS  PubMed  Google Scholar 

  63. Liu P, Wang S, Wang G, et al. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med. 2022;26(20):5165–80. https://doi.org/10.1111/jcmm.17541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu J, Liu B, Wang Z, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 2019;9(23):6901–19. https://doi.org/10.7150/thno.37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang C, Huang Y, Zhou Y, et al. Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Mol Med Rep. 2018;17(3):4605–10. https://doi.org/10.3892/mmr.2018.8380

    Article  CAS  PubMed  Google Scholar 

  66. Wei L-H, Chao N-X, Gao S, et al. Homocysteine induces vascular inflammatory response via SMAD7 hypermethylation in human umbilical vein smooth muscle cells. Microvasc Res. 2018:120. https://doi.org/10.1016/j.mvr.2018.05.003

  67. Wei L, Zhao S, Wang G, et al. SMAD7 methylation as a novel marker in atherosclerosis. Biochem Biophys Res Commun. 2018;496(2):700–5. https://doi.org/10.1016/j.bbrc.2018.01.121

    Article  CAS  PubMed  Google Scholar 

  68. Nanda V, Downing KP, Ye J, et al. CDKN2B regulates TGFβ signaling and smooth muscle cell investment of hypoxic neovessels. Circ Res. 2016;118(2):230–40. https://doi.org/10.1161/CIRCRESAHA.115.307906

    Article  CAS  PubMed  Google Scholar 

  69. Chen W, Schilperoort M, Cao Y, et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19(4):228–49. https://doi.org/10.1038/s41569-021-00629-x

    Article  PubMed  Google Scholar 

  70. Gangadaran P, Madhyastha H, Madhyastha R, et al. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol. 2022;13:1085057. https://doi.org/10.3389/fimmu.2022.1085057

    Article  CAS  PubMed  Google Scholar 

  71. Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA. 2017;114(40):10584–9. https://doi.org/10.1073/pnas.1709210114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sen S, Xavier J, Kumar N, Ahmad MZ, Ranjan OP. Exosomes as natural nanocarrier-based drug delivery system: recent insights and future perspectives. 3 Biotech. 2023;13(3):101. https://doi.org/10.1007/s13205-023-03521-2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xi X-M, Xia S-J, Lu R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie. 2021;76(2):61–7. https://doi.org/10.1691/ph.2021.0128

    Article  CAS  PubMed  Google Scholar 

  74. Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–4010. https://doi.org/10.7150/thno.56035

    Article  CAS  PubMed  Google Scholar 

  75. Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem, Int Ed Engl. 2020;59(10):4068–74. https://doi.org/10.1002/anie.201913700

    Article  CAS  PubMed  Google Scholar 

  76. Zhao Y, Zheng Y, Zhu Y, et al. Docetaxel-loaded M1 macrophage-derived exosomes for a safe and efficient chemoimmunotherapy of breast cancer. J Nanobiotechnology. 2022;20(1):359. https://doi.org/10.1186/s12951-022-01526-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao C, Song W, Ma J, Wang N. Macrophage-derived hybrid exosome-mimic nanovesicles loaded with black phosphorus for multimodal rheumatoid arthritis therapy. Biomater Sci. 2022;10(23):6731–9. https://doi.org/10.1039/d2bm01274j

    Article  CAS  PubMed  Google Scholar 

  78. Zheng X, Sun K, Liu Y, et al. Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release. 2022;353:675–84. https://doi.org/10.1016/j.jconrel.2022.12.026

    Article  CAS  PubMed  Google Scholar 

  79. Li H, Feng Y, Zheng X, et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release. 2022;341:16–30. https://doi.org/10.1016/j.jconrel.2021.11.019

    Article  CAS  PubMed  Google Scholar 

  80. Gao Z-S, Zhang C-J, Xia N, et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 2021;126:211–23. https://doi.org/10.1016/j.actbio.2021.03.018

    Article  CAS  PubMed  Google Scholar 

  81. Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in cardiovascular disease: from mechanism to therapeutic target. Metabolites. 2023;13(4) https://doi.org/10.3390/metabo13040479

  82. Fu W, Li T, Chen H, Zhu S, Zhou C. Research progress in exosome-based nanoscale drug carriers in tumor therapies. Front Oncol. 2022;12:919279. https://doi.org/10.3389/fonc.2022.919279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu R, Dai C, Dong C, et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959–76. https://doi.org/10.1021/acsnano.2c03422

    Article  CAS  PubMed  Google Scholar 

  84. Yousefpour P, Chilkoti A. Co-opting biology to deliver drugs. Biotechnol Bioeng. 2014;111(9):1699–716. https://doi.org/10.1002/bit.25307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev. 2016;106(Pt A):63–72. https://doi.org/10.1016/j.addr.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  86. Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11(1):2622. https://doi.org/10.1038/s41467-020-16439-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng R, Ji H, Jin L, et al. Macrophage-based therapies for atherosclerosis management. J Immunol Res. 2020;2020:8131754. https://doi.org/10.1155/2020/8131754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang R, Wu S, Ding Q, et al. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv. 2021;28(1):1109–19. https://doi.org/10.1080/10717544.2021.1934188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu Y, Wan S, Yang S, et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. J Nanobiotechnology. 2022;20(1):542. https://doi.org/10.1186/s12951-022-01746-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li Y, Che J, Chang L, et al. CD47- and Integrin α4/β1-comodified-macrophage-membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv Healthc Mater. 2022;11(4):e2101788. https://doi.org/10.1002/adhm.202101788

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164–80. https://doi.org/10.7150/thno.47841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sha X, Dai Y, Chong L, et al. Pro-efferocytic macrophage membrane biomimetic nanoparticles for the synergistic treatment of atherosclerosis via competition effect. J Nanobiotechnology. 2022;20(1):506. https://doi.org/10.1186/s12951-022-01720-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao J, Ling L, Zhu W, et al. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis. J Control Release. 2023;353:1068–83. https://doi.org/10.1016/j.jconrel.2022.12.041

    Article  CAS  PubMed  Google Scholar 

  94. Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71. https://doi.org/10.3109/03014460.2013.807878

    Article  PubMed  Google Scholar 

  95. Kinchen JM, Ravichandran KS. Phagocytic signaling: you can touch, but you can’t eat. Curr Biol. 2008;18(12):R521–R4. https://doi.org/10.1016/j.cub.2008.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tajbakhsh A, Farahani N, Gheibihayat SM, et al. Autoantigen-specific immune tolerance in pathological and physiological cell death: nanotechnology comes into view. Int Immunopharmacol. 2021;90:107177. https://doi.org/10.1016/j.intimp.2020.107177

    Article  CAS  PubMed  Google Scholar 

  97. Morioka S, Maueröder C, Ravichandran KS. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity. 2019;50(5):1149–62. https://doi.org/10.1016/j.immuni.2019.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov. 2022;21(8):601–20. https://doi.org/10.1038/s41573-022-00470-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baraniecki Ł, Tokarz-Deptuła B, Syrenicz A, Deptuła W. Macrophage efferocytosis in atherosclerosis. Scand J Immunol. 2022:e13251. https://doi.org/10.1111/sji.13251

  100. Vorselen D. Dynamics of phagocytosis mediated by phosphatidylserine. Biochem Soc Trans. 2022;50(5):1281–91. https://doi.org/10.1042/BST20211254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang L, Li H, Tang Y, Yao P. Potential mechanisms and effects of efferocytosis in atherosclerosis. Front Endocrinol. 2020;11:585285. https://doi.org/10.3389/fendo.2020.585285

    Article  Google Scholar 

  102. Kojima Y, Weissman IL, Leeper NJ. The role of efferocytosis in atherosclerosis. Circulation. 2017;135(5):476–89. https://doi.org/10.1161/CIRCULATIONAHA.116.025684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thorp EB. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis: Int J Program Cell Death. 2010;15(9):1124–36. https://doi.org/10.1007/s10495-010-0516-6

    Article  CAS  Google Scholar 

  104. Yang L, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015;125(4):1620–36. https://doi.org/10.1172/JCI75417

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yurdagul A. Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism. 2021;3(2) https://doi.org/10.20900/immunometab20210017

  106. Schrijvers DM, De Meyer GRY, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(6):1256–61.

    Article  CAS  PubMed  Google Scholar 

  107. Yurdagul A, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front Cardiovasc Med. 2017;4:86. https://doi.org/10.3389/fcvm.2017.00086

    Article  CAS  PubMed  Google Scholar 

  108. Dhawan UK, Singhal A, Subramanian M. Dead cell and debris clearance in the atherosclerotic plaque: mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacol Res. 2021;170:105699. https://doi.org/10.1016/j.phrs.2021.105699

    Article  CAS  PubMed  Google Scholar 

  109. Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest. 2018;128(7):2713–23. https://doi.org/10.1172/JCI97950

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang Y, Subramanian M, Yurdagul A, et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell. 2017;171(2) https://doi.org/10.1016/j.cell.2017.08.041

  111. Yin C, Vrieze AM, Rosoga M, et al. Efferocytic defects in early atherosclerosis are driven by GATA2 overexpression in macrophages. Front Immunol. 2020;11:594136. https://doi.org/10.3389/fimmu.2020.594136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wei Y, Zhu M, Corbalán-Campos J, et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(4):796–803. https://doi.org/10.1161/ATVBAHA.114.304723

    Article  CAS  PubMed  Google Scholar 

  113. Singh B, Li K, Cui K, et al. Defective efferocytosis of vascular cells in heart disease. Front Cardiovasc Med. 2022;9:1031293. https://doi.org/10.3389/fcvm.2022.1031293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kiss RS, Elliott MR, Ma Z, Marcel YL, Ravichandran KS. Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr Biol. 2006;16(22):2252–8.

    Article  CAS  PubMed  Google Scholar 

  115. Chen W, Li L, Wang J, et al. The ABCA1-efferocytosis axis: a new strategy to protect against atherosclerosis. Clinica Chimica Acta; International Journal of. Clin Chem. 2021;518:1–8. https://doi.org/10.1016/j.cca.2021.02.025

    Article  CAS  Google Scholar 

  116. Tao H, Yancey PG, Babaev VR, et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J Lipid Res. 2015;56(8):1449–60. https://doi.org/10.1194/jlr.M056689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Doran AC, Ozcan L, Cai B, et al. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest. 2017;127(11):4075–89. https://doi.org/10.1172/JCI94735

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P. Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity. Front Oncol. 2015;5:7. https://doi.org/10.3389/fonc.2015.00007

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kojima Y, Volkmer J-P, McKenna K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen L, Zhou Z, Hu C, et al. Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD47 antibody for atherosclerotic therapy. Research (Wash D C). 2022;2022:9845459. https://doi.org/10.34133/2022/9845459

    Article  CAS  PubMed  Google Scholar 

  121. Singla B, Lin H-P, Ahn W, et al. Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovasc Res. 2022;118(15):3097–111. https://doi.org/10.1093/cvr/cvab369

    Article  CAS  PubMed  Google Scholar 

  122. Gerlach BD, Marinello M, Heinz J, et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 2020;27(2):525–39. https://doi.org/10.1038/s41418-019-0370-1

    Article  CAS  PubMed  Google Scholar 

  123. Karunakaran D, Geoffrion M, Wei L, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2016;2(7):e1600224. https://doi.org/10.1126/sciadv.1600224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Flores AM, Hosseini-Nassab N, Jarr K-U, et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol. 2020;15(2):154–61. https://doi.org/10.1038/s41565-019-0619-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tajbakhsh A, Bianconi V, Pirro M, et al. Efferocytosis and atherosclerosis: regulation of phagocyte function by microRNAs. Trends Endocrinol Metab. 2019;30(9):672–83. https://doi.org/10.1016/j.tem.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  126. Yurdagul A, Subramanian M, Wang X, et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 2020;31(3) https://doi.org/10.1016/j.cmet.2020.01.001

  127. Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun. 2016;7:12859. https://doi.org/10.1038/ncomms12859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fernanández-Ruiz I. Atherosclerosis: mitochondrial fission is crucial for efferocytosis. Nat Rev Cardiol. 2017;14(12):696. https://doi.org/10.1038/nrcardio.2017.162

    Article  PubMed  Google Scholar 

  129. Jarr K-U, Ye J, Kojima Y, et al. The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis. Nat Cardiovasc Res. 2022;1(3):253–62. https://doi.org/10.1038/s44161-022-00023-x

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fernández-Ruiz I. Statins promote efferocytosis in atherosclerotic plaques. Nat Rev Cardiol. 2022;19(5):286. https://doi.org/10.1038/s41569-022-00699-5

    Article  CAS  PubMed  Google Scholar 

  131. Tajbakhsh A, Gheibihayat SM, Askari H, et al. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther. 2022;238:108282. https://doi.org/10.1016/j.pharmthera.2022.108282

    Article  CAS  PubMed  Google Scholar 

  132. Li S, Sun Y, Liang C-P, et al. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res. 2009;105(11):1072–82. https://doi.org/10.1161/CIRCRESAHA.109.199570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable

Funding

This work was supported by the “Topping Up Project” of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine.

Author information

Authors and Affiliations

Authors

Contributions

XL and SP contributed to the conception of and writing of the manuscript. YJ and LW contributed to the analysis and revision of the manuscript. SP and YL helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Shuchao Pang or Yi Liu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoyu Liu and Shuchao Pang share first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Pang, S., Jiang, Y. et al. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07513-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07513-5

Keywords

Navigation