Skip to main content
Log in

Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Objective

The SGLT2 inhibitor, canagliflozin, not only reduces glycemia in patients with type 2 diabetes but also exerts cardioprotective effects in individuals without diabetes. However, its potential beneficial effects in cardiac arrest have not been characterized. The purpose of this study was to examine the protective effect of canagliflozin pretreatment on postresuscitation-induced cardiac dysfunction in vivo.

Methods

Male C57/BL6 mice were randomized to vehicle (sham and control) or canagliflozin treatment groups. All mice except for the sham-operated mice were subjected to potassium chloride-induced cardiac arrest followed by chest compressions and intravenous epinephrine for resuscitation. Canagliflozin therapy efficacies were evaluated by electrocardiogram, echocardiography, histological analysis, inflammatory response, serum markers of myocardial injury, protein phosphorylation analysis, and immunohistological assessment.

Results

Canagliflozin-pretreated mice exhibited a higher survival rate (P < 0.05), a shorter return of spontaneous circulation (ROSC) time (P < 0.01) and a higher neurological score (P < 0.01 or P < 0.001) than control mice after resuscitation. Canagliflozin was effective at improving cardiac arrest and resuscitation-associated cardiac dysfunction, indicated by increased left ventricular ejection fraction and fractional shortening (P < 0.001). Canagliflozin reduced serum levels of LDH, CK-MB and α-HBDH, ameliorated systemic inflammatory response, and diminished the incidence of early resuscitation-induced arrhythmia. Notably, canagliflozin promoted phosphorylation of cardiac STAT-3 postresuscitation. Furthermore, pharmacological inhibition of STAT-3 by Ag490 blunted STAT-3 phosphorylation and abolished the cardioprotective actions of canagliflozin.

Conclusions

Canagliflozin offered a strong cardioprotective effect against cardiac arrest and resuscitation-induced cardiac dysfunction. This canagliflozin-induced cardioprotection is mediated by the STAT-3-dependent cell-survival signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data in this study are available upon reasonable request from the corresponding author.

References

  1. Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion. Circ Res. 2015;116(12):2041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huet O, Dupic L, Batteux F, et al. Postresuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit Care Med. 2011;39(7):1712–20.

    Article  CAS  PubMed  Google Scholar 

  3. Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inzucchi SE, Kosiborod M, Fitchett D, et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation. 2018;138(17):1904–7.

    Article  PubMed  Google Scholar 

  5. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  6. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  7. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article  CAS  PubMed  Google Scholar 

  8. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  9. Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–67.

    Article  CAS  PubMed  Google Scholar 

  10. von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute Myocardial Infarction: the EMMY trial. Eur Heart J. 2022;43(41):4421–32.

    Article  Google Scholar 

  11. Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G. STAT3 as a common signal of ischemic conditioning: a lesson on "rigor and reproducibility" in preclinical studies on cardioprotection. Basic Res Cardiol. 2018;113(1):3.

    Article  PubMed  Google Scholar 

  12. Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109(11):1302–8.

    Article  CAS  PubMed  Google Scholar 

  13. Luo N, Liu J, Chen Y, Li H, Hu Z, Abbott GW. Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PLoS One. 2018;13(5):e0196186.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boengler K, Buechert A, Heinen Y, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008;102(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kabil SL, Mahmoud NM. Canagliflozin protects against non-alcoholic steatohepatitis in type-2 diabetic rats through zinc alpha-2 glycoprotein up-regulation. Eur J Pharmacol. 2018;828:135–45.

    Article  CAS  PubMed  Google Scholar 

  16. Abella BS, Zhao D, Alvarado J, Hamann K, Vanden Hoek TL, Becker LB. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109(22):2786–91.

    Article  PubMed  Google Scholar 

  17. Hu Z, Kant R, Anand M, et al. Kcne2 deletion creates a multisystem syndrome predisposing to sudden cardiac death. Circ Cardiovasc Genet. 2014;7(1):33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol. 2021;20(1):199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salcido DD, Schmicker RH, Kime N, et al. Effects of intra-resuscitation antiarrhythmic administration on rearrest occurrence and intra-resuscitation ECG characteristics in the ROC ALPS trial. Resuscitation. 2018;129:6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79.

    Article  PubMed  Google Scholar 

  21. Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 2019;6:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Myerburg RJ. Sudden cardiac death: exploring the limits of our knowledge. J Cardiovasc Electrophysiol. 2001;12(3):369–81.

    Article  CAS  PubMed  Google Scholar 

  23. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.

    Article  PubMed  Google Scholar 

  24. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.

    Article  PubMed  Google Scholar 

  25. Kilgannon JH, Roberts BW, Reihl LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Negovsky VA. The second step in resuscitation--the treatment of the 'post-resuscitation disease'. Resuscitation. 1972;1(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz-Bailen M, Aguayo de Hoyos E, Ruiz-Navarro S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66(2):175–81.

    Article  PubMed  Google Scholar 

  28. Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):2110–6.

    Article  PubMed  Google Scholar 

  29. Vognsen M, Fabian-Jessing BK, Secher N, et al. Contemporary animal models of cardiac arrest: a systematic review. Resuscitation. 2017;113:115–23.

    Article  PubMed  Google Scholar 

  30. Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation. 1983;68:I25–36.

    CAS  PubMed  Google Scholar 

  31. Song F, Shan Y, Cappello F, et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Crit Care Med. 2010;38(5):1329–34.

    Article  PubMed  Google Scholar 

  32. Nishida T, Yu JD, Minamishima S, et al. Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med. 2009;37(1):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bro-Jeppesen J, Kjaergaard J, Stammet P, et al. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 degrees C or 36 degrees C. Resuscitation. 2016;98:1–8.

    Article  PubMed  Google Scholar 

  34. Meng ZH, Dyer K, Billiar TR, Tweardy DJ. Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am J Phys Cell Phys. 2001;280(2):C343–51.

    CAS  Google Scholar 

  35. Niemann JT, Youngquist ST, Shah AP, Thomas JL, Rosborough JP. TNF-alpha blockade improves early post-resuscitation survival and hemodynamics in a swine model of ischemic ventricular fibrillation. Resuscitation. 2013;84(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer MAS, Wiberg S, Grand J, et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (the IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized clinical trial. Circulation. 2021;143(19):1841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.

    Article  CAS  PubMed  Google Scholar 

  38. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  39. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  40. Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nikolaou PE, Mylonas N, Makridakis M, et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol. 2022;117(1):27.

    Article  CAS  PubMed  Google Scholar 

  42. Ye Y, Jia X, Bajaj M, Birnbaum Y. Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32(6):553–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.

    Article  PubMed  Google Scholar 

  44. Sayour AA, Korkmaz-Icoz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med. 2019;17(1):127.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019;4(1):15–26.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heusch G. Myocardial stunning and hibernation revisited. Nat Rev Cardiol. 2021;18(7):522–36.

    Article  PubMed  Google Scholar 

  47. Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  48. Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283(4):H1481–8.

    Article  CAS  PubMed  Google Scholar 

  49. Rossello X, Yellon DM. The RISK pathway and beyond. Basic Res Cardiol. 2018;113(1):2.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Grant No. 82270326 (to ZH) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Zhaoyang Hu.

Conducted experiments and the study: Feng Ju, Jiaxue Li, Qifeng Wang, Ting Liu, Quanhua Liu, Zhaoyang Hu.

Performed data analysis or interpreted the data: Feng Ju, Geoffrey W. Abbott, Jiaxue Li, Qifeng Wang, Ting Liu, Quanhua Liu, Zhaoyang Hu

Wrote or contributed to the writing of the manuscript: Geoffrey W. Abbott, Zhaoyang Hu.

Corresponding author

Correspondence to Zhaoyang Hu.

Ethics declarations

Ethics Approval

All animal experiments were conducted in conformity with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH Publication 8th edition, 2011). The experiments were approved by the Institutional Animal Care and Use Committee of Sichuan University (Sichuan, China, approval number: 20211201A).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Ag490 did not affect cardiac morphology or apoptosis (A) Representative H&E-stained heart sections with (+) or without (–) Ag490 after cardiopulmonary resuscitation. Scale bars, 50 μm. n = 5 mice per group. (B) Left Representative TUNEL stained hearts sections with (+) or without (–) Ag490 after cardiopulmonary resuscitation. Scale bars, 50 μm. n = 5 mice per group. Right Apoptotic index in each group. (n = 5 mice per group) (by one-way ANOVA). CON, control. Values for sham, CON, and canagliflozin mice are repeated from Fig. 5B for comparison. (PDF 6100 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, F., Abbott, G.W., Li, J. et al. Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice. Cardiovasc Drugs Ther 38, 279–295 (2024). https://doi.org/10.1007/s10557-022-07419-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07419-8

Keywords

Navigation