Skip to main content
Log in

Dapagliflozin Attenuates Na+/H+ Exchanger-1 in Cardiofibroblasts via AMPK Activation

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

We assessed whether the SGLT-2 inhibitor dapagliflozin (Dapa) attenuates the upregulation of the cardiac Na+/H+ exchanger (NHE-1) in vitro in mouse cardiofibroblasts stimulated with lipopolysaccharides (LPS) and whether this effect is dependent on adenosine monophosphate kinase (AMPK) activation.

Methods

Mouse cardiofibroblasts were exposed for 16 h to Dapa (0.4 μM), AMPK activator (A769662 (10 μM)), AMPK inhibitor (compound C (CC) (10 μM)), an SGLT-1 and SGLT-2 inhibitor (phlorizin (PZ) (100 μM)), Dapa+CC, or Dapa+PZ, and then stimulated with LPS (10 ng/ml) for 3 h. NHE-1 mRNA levels were assessed by rt-PCR and total AMPK, phosphorylated-AMPK (P-AMPK), NHE-1, and heat shock protein-70 (Hsp70) protein levels in the whole cell lysate by immunoblotting. In addition, NHE-1 protein levels attached to Hsp70 were assessed by immunoprecipitation.

Results

Exposure to LPS significantly reduced P-AMPK levels in the cardiofibroblasts. A769662 and Dapa equally increased P-AMPK. The effect was blocked by CC. Phlorizin had no effect on P-AMPK. LPS exposure significantly increased NHE-1 mRNA levels. Both Dapa and A769662 equally attenuated this increase. The effect of Dapa was blocked with CC. Interestingly, none of the compounds significantly affected NHE-1 and Hsp70 protein levels in the whole cell lysate. However, LPS significantly increased the concentration of NHE-1 attached to Hsp70. Both Dapa and A69662 attenuated this association and CC blocked the effect of Dapa. Again, phlorizin had no effect and did not alter the effect of Dapa.

Conclusions

Dapa increases P-AMPK in cardiofibroblasts exposed to LPS. Dapa attenuated the increase in NHE-1 mRNA and the association between NHE-1 and Hsp70. This effect was dependent on AMPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  Google Scholar 

  2. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  Google Scholar 

  3. Udell JA, Yuan Z, Rush T, Sicignano NM, Galitz M, Rosenthal N. Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor: results from the EASEL population-based cohort study (evidence for cardiovascular outcomes with sodium glucose cotransporter 2 inhibitors in the real world). Circulation. 2018;137(14):1450–9.

    Article  CAS  Google Scholar 

  4. Birkeland KI, Jorgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5(9):709–17.

    Article  CAS  Google Scholar 

  5. Kosiborod M, Lam CSP, Kohsaka S, Kim DJ, Karasik A, Shaw J, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39.

    Article  CAS  Google Scholar 

  6. Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73.

    Article  CAS  Google Scholar 

  7. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia. 2018;61(3):722–6.

    Article  CAS  Google Scholar 

  8. Kohlhaas M, Maack C. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Circulation. 2010;122(22):2273–80.

    Article  CAS  Google Scholar 

  9. Bertero E, Prates Roma L, Ameri P, Maack C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res. 2018;114(1):12–8.

    Article  Google Scholar 

  10. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121(14):1606–13.

    Article  CAS  Google Scholar 

  11. Lang F, Foller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin). 2014;8(1):20–8.

    Article  CAS  Google Scholar 

  12. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.

    Article  Google Scholar 

  13. Kanwal A, Nizami HL, Mallapudi S, Putcha UK, Mohan GK, Banerjee SK. Inhibition of SGLT1 abrogates preconditioning-induced cardioprotection against ischemia-reperfusion injury. Biochem Biophys Res Commun. 2016;472(2):392–8.

    Article  CAS  Google Scholar 

  14. Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka TD, Ito K, Harada T, et al. Expression of SGLT1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemia-reperfusion injury in mice. PLoS One. 2015;10(6):e0130605.

    Article  Google Scholar 

  15. Tirmenstein M, Dorr TE, Janovitz EB, Hagan D, Abell LM, Onorato JM, et al. Nonclinical toxicology assessments support the chronic safety of dapagliflozin, a first-in-class sodium-glucose cotransporter 2 inhibitor. Int J Toxicol. 2013;32(5):336–50.

    Article  CAS  Google Scholar 

  16. Beloto-Silva O, Machado UF, Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J Membr Biol. 2011;239(3):157–65.

    Article  CAS  Google Scholar 

  17. Huang C, Wang J, Chen Z, Wang Y, Zhang W. 2-phenylethynesulfonamide prevents induction of pro-inflammatory factors and attenuates LPS-induced liver injury by targeting NHE1-Hsp70 complex in mice. PLoS One. 2013;8(6):e67582.

    Article  CAS  Google Scholar 

  18. Xue J, Zhou D, Yao H, Gavrialov O, McConnell MJ, Gelb BD, et al. Novel functional interaction between Na+/H+ exchanger 1 and tyrosine phosphatase SHP-2. Am J Physiol Regul Integr Comp Physiol. 2007;292(6):R2406–16.

    Article  CAS  Google Scholar 

  19. da Costa-Pessoa JM, Damasceno RS, Machado UF, Beloto-Silva O, Oliveira-Souza M. High glucose concentration stimulates NHE-1 activity in distal nephron cells: the role of the Mek/Erk1/2/p90RSK and p38MAPK signaling pathways. Cell Physiol Biochem. 2014;33(2):333–43.

    Article  Google Scholar 

  20. Dreffs A, Henderson D, Dmitriev AV, Antonetti DA, Linsenmeier RA. Retinal pH and acid regulation during metabolic acidosis. Curr Eye Res. 2018;43(7):902–12.

    Article  CAS  Google Scholar 

  21. Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M. Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol. 2009;46(6):998–1007.

    Article  CAS  Google Scholar 

  22. Rotte A, Pasham V, Eichenmuller M, Bhandaru M, Foller M, Lang F. Upregulation of Na+/H+ exchanger by the AMP-activated protein kinase. Biochem Biophys Res Commun. 2010;398(4):677–82.

    Article  CAS  Google Scholar 

  23. Hardie DG. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 2014;20(6):939–52.

    Article  CAS  Google Scholar 

  24. Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol. 2015;33:1–7.

    Article  CAS  Google Scholar 

  25. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.

    Article  CAS  Google Scholar 

  26. Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, et al. Cardiomyocyte specific deletion of Sirt1 gene sensitizes myocardium to ischemia and reperfusion injury. Cardiovasc Res. 2018;114:805–21.

    Article  Google Scholar 

  27. Chang YK, Choi H, Jeong JY, Na KR, Lee KW, Lim BJ, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One. 2016;11(7):e0158810.

    Article  Google Scholar 

  28. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784–94.

    Article  CAS  Google Scholar 

  29. Hannan KM, Little PJ. Mechanisms regulating the vascular smooth muscle Na/H exchanger (NHE-1) in diabetes. Biochem Cell Biol. 1998;76(5):751–9.

    Article  CAS  Google Scholar 

  30. Takahashi E, Abe J, Gallis B, Aebersold R, Spring DJ, Krebs EG, et al. p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J Biol Chem. 1999;274(29):20206–14.

    Article  CAS  Google Scholar 

  31. Chistiakov DA, Orekhov AN, Bobryshev YV. The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol. 2016;101(2):231–40.

    Article  CAS  Google Scholar 

  32. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56.

    Article  CAS  Google Scholar 

  33. American Diabetes A. 8. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S73–85.

    Article  Google Scholar 

Download references

Funding

The study was funded by the John S. Dunn Chair in Cardiology Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yochai Birnbaum.

Ethics declarations

Conflict of Interest

Dr. Ye received research grants from Astra Zeneca and Boehringer Ingelheim. Dr. Bajaj received research grants from AstraZeneca, Boehringer Ingelheim, Eli-Lilly, Sanofi Aventis, and Novo Nordisk. Dr. Birnbaum receives research grants from Astra Zeneca. Dr. Jia has no conflict of interest.

Research Involving Animals

Mice received humane care in compliance with The Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication No. 85–23, revised 1996). The protocol was approved by the University of Texas Medical Branch IACUC, Galveston, Texas, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Jia, X., Bajaj, M. et al. Dapagliflozin Attenuates Na+/H+ Exchanger-1 in Cardiofibroblasts via AMPK Activation. Cardiovasc Drugs Ther 32, 553–558 (2018). https://doi.org/10.1007/s10557-018-6837-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-018-6837-3

Keywords

Navigation