Skip to main content

Advertisement

Log in

Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model.

Methods

We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies.

Results

Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA.

Conclusion

Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggarwal S, Qamar A, Sharma V, Sharma A. Abdominal aortic aneurysm: a comprehensive review. Exp Clin Cardiol. 2011;16(1):11–5.

    PubMed  PubMed Central  Google Scholar 

  2. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.

    Article  PubMed  Google Scholar 

  3. Thompson SG, Ashton HA, Gao L, Buxton MJ, Scott RA. Multicentre aneurysm screening study G. final follow-up of the multicentre aneurysm screening study (MASS) randomized trial of abdominal aortic aneurysm screening. Br J Surg. 2012;99(12):1649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swerdlow NJ, Wu WW, Schermerhorn ML. Open and endovascular Management of Aortic Aneurysms. Circ Res. 2019;124(4):647–61..

    Article  CAS  PubMed  Google Scholar 

  5. Corriere MA, Feurer ID, Becker SY, Dattilo JB, Passman MA, Guzman RJ, et al. Endoleak following endovascular abdominal aortic aneurysm repair: implications for duration of screening. Ann Surg. 2004;239(6):800–5; discussion 5-7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Quintana RA, Taylor WR. Cellular mechanisms of aortic aneurysm formation. Circ Res. 2019;124(4):607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol. 2002;22(4):560–5.

    Article  CAS  PubMed  Google Scholar 

  8. Raffort J, Lareyre F, Clement M, Hassen-Khodja R, Chinetti G, Mallat Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol. 2017;14(8):457–71.

    Article  PubMed  Google Scholar 

  9. Lindeman JH, Matsumura JS. Pharmacologic Management of Aneurysms. Circ Res. 2019;124(4):631–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schopfer FJ, Khoo NKH. Nitro-fatty acid logistics: formation, biodistribution, signaling, and pharmacology. Trends Endocrinol Metab. 2019;30(8):505–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonacci G, Baker PR, Salvatore SR, Shores D, Khoo NK, Koenitzer JR, et al. Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J Biol Chem. 2012;287(53):44071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salvatore SR, Vitturi DA, Baker PR, Bonacci G, Koenitzer JR, Woodcock SR, et al. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J Lipid Res. 2013;54(7):1998–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delmastro-Greenwood M, Hughan KS, Vitturi DA, Salvatore SR, Grimes G, Potti G, et al. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. Free Radic Biol Med. 2015;89:333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker LM, Baker PR, Golin-Bisello F, Schopfer FJ, Fink M, Woodcock SR, et al. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction. J Biol Chem. 2007;282(42):31085–93.

    Article  CAS  PubMed  Google Scholar 

  15. Schopfer FJ, Cipollina C, Freeman BA. Formation and signaling actions of electrophilic lipids. Chem Rev. 2011;111(10):5997–6021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, et al. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem. 2010;285(16):12321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu H, Sun J, Liang W, Zhang J, Rom O, Garcia-Barrio MT, et al. Novel gene regulatory networks identified in response to nitro-conjugated linoleic acid in human endothelial cells. Physiol Genomics. 2019;51(6):224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem. 2011;286(16):14019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garner RM, Mould DR, Chieffo C, Jorkasky DK. Pharmacokinetic and pharmacodynamic effects of oral CXA-10, a nitro fatty acid, after single and multiple ascending doses in healthy and obese subjects. Clin Transl Sci. 2019;12(6):667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Jia Z, Liu S, Downton M, Liu G, Du Y, et al. Combined losartan and nitro-oleic acid remarkably improves diabetic nephropathy in mice. Am J Physiol Renal Physiol. 2013;305(11):F1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rom O, Xu G, Guo Y, Zhu Y, Wang H, Zhang J, et al. Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice. EBioMedicine. 2019;41:62–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khoo NKH, Fazzari M, Chartoumpekis DV, Li L, Guimaraes DA, Arteel GE, et al. Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis. Redox Biol. 2019;22:101132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rudolph V, Rudolph TK, Schopfer FJ, Bonacci G, Woodcock SR, Cole MP, et al. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc Res. 2010;85(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  24. Rudolph TK, Rudolph V, Edreira MM, Cole MP, Bonacci G, Schopfer FJ, et al. Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30(5):938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Villacorta L, Chang L, Fan Z, Hamblin M, Zhu T, et al. Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ Res. 2010;107(4):540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charles RL, Rudyk O, Prysyazhna O, Kamynina A, Yang J, Morisseau C, et al. Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci U S A. 2014;111(22):8167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villacorta L, Gao Z, Schopfer FJ, Freeman BA, Chen YE. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci (Landmark Ed). 2016;21:873–89.

  28. Khoo NKH, Schopfer FJ. Nitrated fatty acids: from diet to disease. Curr Opin Physiol. 2019;9:67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schopfer FJ, Vitturi DA, Jorkasky DK, Freeman BA. Nitro-fatty acids: new drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide. 2018;79:31–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamas Bervejillo M, Bonanata J, Franchini GR, Richeri A, Marques JM, Freeman BA, et al. A FABP4-PPARgamma signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes. Redox Biol. 2020;29:101376.

    Article  CAS  PubMed  Google Scholar 

  31. Verescakova H, Ambrozova G, Kubala L, Perecko T, Koudelka A, Vasicek O, et al. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. Free Radic Biol Med. 2017;104:10–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Villacorta L, Chang L, Salvatore SR, Ichikawa T, Zhang J, Petrovic-Djergovic D, et al. Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc Res. 2013;98(1):116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ambrozova G, Martiskova H, Koudelka A, Ravekes T, Rudolph TK, Klinke A, et al. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic Biol Med. 2016;90:252–60.

    Article  CAS  PubMed  Google Scholar 

  34. Holmes DR, Wester W, Thompson RW, Reilly JM. Prostaglandin E2 synthesis and cyclooxygenase expression in abdominal aortic aneurysms. J Vasc Surg. 1997;25(5):810–5.

    Article  CAS  PubMed  Google Scholar 

  35. Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW, et al. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation. 1999;100(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  36. Woodcock SR, Bonacci G, Gelhaus SL, Schopfer FJ. Nitrated fatty acids: synthesis and measurement. Free Radic Biol Med. 2013;59:14–26.

    Article  CAS  PubMed  Google Scholar 

  37. Assouvie A, Daley-Bauer LP, Rousselet G. Growing murine bone marrow-derived macrophages. Methods Mol Biol. 1784;2018:29–33.

    Google Scholar 

  38. Lu H, Howatt DA, Balakrishnan A, Graham MJ, Mullick AE, Daugherty A. Hypercholesterolemia induced by a PCSK9 gain-of-function mutation augments angiotensin II-induced abdominal aortic aneurysms in C57BL/6 mice-brief report. Arterioscler Thromb Vasc Biol. 2016;36(9):1753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu H, Sun J, Liang W, Chang Z, Rom O, Zhao Y, et al. Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell TFEB. Circulation. 2020;

  40. Hamblin M, Chang L, Zhang H, Yang K, Zhang J, Chen YE. Vascular smooth muscle cell peroxisome proliferator-activated receptor-gamma deletion promotes abdominal aortic aneurysms. J Vasc Surg. 2010;52(4):984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao G, Fu Y, Cai Z, Yu F, Gong Z, Dai R, et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circ Res. 2017;121(12):1331–45.

    Article  CAS  PubMed  Google Scholar 

  42. Toyoda Y, Morimoto K, Suno R, Horita S, Yamashita K, Hirata K, et al. Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol. 2019;15(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  43. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270–7.

  44. Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011;32(10):2149–59.

    Article  CAS  PubMed  Google Scholar 

  45. Bitencourt-Ferreira G, de Azevedo WF Jr. Docking with SwissDock. Methods Mol Biol. 2019;2053:189–202.

    Article  CAS  PubMed  Google Scholar 

  46. Gutowski L, Gutowska K, Piorunska-Stolzmann M, Formanowicz P, Formanowicz D. Systems approach to study associations between OxLDL and abdominal aortic aneurysms. Int J Mol Sci. 2019;20(16).

  47. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  48. Camacho M, Dilme J, Sola-Villa D, Rodriguez C, Bellmunt S, Siguero L, et al. Microvascular COX-2/mPGES-1/EP-4 axis in human abdominal aortic aneurysm. J Lipid Res. 2013;54(12):3506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, et al. Inhibition of EP4 signaling attenuates aortic aneurysm formation. PLoS One. 2012;7(5):e36724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bayston T, Ramessur S, Reise J, Jones KG, Powell JT. Prostaglandin E2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J Vasc Surg. 2003;38(2):354–9.

    Article  CAS  PubMed  Google Scholar 

  51. Minami M, Shimizu K, Okamoto Y, Folco E, Ilasaca ML, Feinberg MW, et al. Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation. J Biol Chem. 2008;283(15):9692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao RY, St Amand T, Li X, Yoon SH, Wang CP, Song H, et al. Prostaglandin receptor EP4 in abdominal aortic aneurysms. Am J Pathol. 2012;181(1):313–21.

    Article  CAS  PubMed  Google Scholar 

  53. Mamun A, Yokoyama U, Saito J, Ito S, Hiromi T, Umemura M et al. A selective antagonist of prostaglandin E receptor subtype 4 attenuates abdominal aortic aneurysm. Physiol Rep. 2018;6(18):e13878.

  54. Xu S, Zhou W, Ge J, Zhang Z. Prostaglandin E2 receptor EP4 is involved in the cell growth and invasion of prostate cancer via the cAMPPKA/PI3KAkt signaling pathway. Mol Med Rep. 2018;17(3):4702–12.

    CAS  PubMed  Google Scholar 

  55. Tang EH, Shvartz E, Shimizu K, Rocha VZ, Zheng C, Fukuda D, et al. Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2011;31(2):261–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants to E. Chen (R01-HL068878), J. Zhang (R01-HL138139), L. Villacorta (R01-HL123333), Y. Zhao (Rackham Graduate Student Research Grants), B.A. Freeman (P01-HL103455), and the Mouse Metabolic Phenotyping Center at Michigan (MMPC, NIH U2CDK110768).

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhao, Z. Chang, G. Zhao, and J. Zhang performed experiments and analyzed results; Y. Zhao, J. Zhang, and Y.E. Chen wrote the paper; H. Lu, W. Xiong, W. Liang, H. Wang, L. Villacorta, T. Zhu, Y. Guo, Y. Fan, L. Chang, M.T. Garcia-Barrio, F.J. Schopfer, B.A. Freeman, J. Zhang provided technical support and discussed the project; J. Zhang and M.T. Garcia-Barrio did critical editing of the manuscript; J. Zhang and Y.E. Chen led the experimental design.

Corresponding authors

Correspondence to Jifeng Zhang or Y. Eugene Chen.

Ethics declarations

Conflicts of Interest/Competing Interests

FJS, BAF, and YEC acknowledge an interest in Complexa, Inc. and FJS and BAF in Creegh Pharmaceuticals, Inc.

Ethics Approval

The collection of human samples was approved by the Institutional Review Board (Hum00077616).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Consent for publication was acquired from all individual participants.

Availability of Data and Material

Additional data and material information are available upon request.

Code Availability

All codes are available upon request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chang, Z., Zhao, G. et al. Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy. Cardiovasc Drugs Ther 35, 939–951 (2021). https://doi.org/10.1007/s10557-020-07031-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07031-8

Keywords

Navigation