Skip to main content
Log in

Estrogen effects in the heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gender specific differences in cardiovascular disease are largely mediated by sex hormones. The use of estrogens significantly reduces the overall incidence of heart disease in postmenopausal women. Beneficial effects of estrogens on plasma lipoprotein levels are clearly established. However, these do not explain the magnitude of risk reduction seen in clinical studies. Thus, additional and currently unknown functions of estrogens must be operative. Elucidation of the exact estrogen action in the heart will have important implications in the treatment of cardiovascular disease. It will probably enhance the therapeutic repertoire in treating heart disease, the most common cause of death in industrialized countries. We will review the current understanding of the function of estrogens in the heart and discuss potential strategies on how to apply these data to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glendy RE, Levine SA, White PD: Coronary disease in youth: Comparison of 100 patients under 40 with 300 persons past 80. JAMA 109: 1775–1781, 1937

    Google Scholar 

  2. Stampfer MJ, Colditz GA, Willett WC, Manson JE, Rosner B, Speizer FE, Hennekens CH: Postmenopausal estrogen therapy and cardiovascular disease. N Engl J Med 325: 756–762, 1991

    Google Scholar 

  3. Bush TL, Barrett-Connor E, Cowan LD, Criqui MH, Wallace RB, Suchindran CM, Tyroler HA, Rifkind BM: Cardiovascular mortality and noncontraceptive use of estrogen in women: results from the Lipid Research Clinics Program follow-up study. Circulation 75: 1102–1109, 1987

    Google Scholar 

  4. Hong MK, Romm PA, Reagan K, Green CE, Rackley CE: Effects of estrogen replacement therapy on serum lipid values and angiographically defined coronary artery disease in postmenopausal women. Am J Cardiol 69: 176–178, 1992

    Google Scholar 

  5. Adams MR, Clarkson TB, Kaplan JR, Koritnik DR: Ovarian secretions and artheriosclerosis. In: JN Gutmann, AH DeChemey, PM Sarrel, (eds). Ovarian secretions and cardiovascular and neurological function. Raven Press, New York, 1990

    Google Scholar 

  6. Klein-Hitpass L, Schorpp M, Wagner W, Ryffel GU: An estrogen responsive element derived from the 5′ flanking region of the xenopus vitellogenin A12 gene functions in transfected human cells. Cell 46: 1053–1061, 1986

    Google Scholar 

  7. Walter P, Green S, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M, Chambon P: Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci USA 82: 7889–7893, 1985

    Google Scholar 

  8. Kumar V, Green S, Staub A, Chambon P: Localisation of the estradiolbinding and putative DNA-binding domains of the human estrogen receptor. EMBO J 5: 2231–2236, 1986

    Google Scholar 

  9. Waterman ML, Stuart A, Nelson C, Greene GL, Evans RM, Rosenfeld MG: A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol 2: 14–21, 1988

    Google Scholar 

  10. Migliaccio A, Di Domenico M, Green S, de Falco A, Kajtaniac EL, Blasi F, Chambon P, Auricchio F: Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol Endocrinol 3: 1061–1069, 1988

    Google Scholar 

  11. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494, 1995

    Google Scholar 

  12. Jacq X, Brou C, Lutz Y, Davidson I, Chambon P, Tora L: Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79: 107–1170, 1994

    Google Scholar 

  13. Kato S, Sasaki H, Suzawa M, Masushige S, Tora L, Chambon P, Gronemeyer H: Widely spaced,, directly repeated PuGGTCA elements act as promiscuous enhancers for different classes of nuclear receptors. Mol Cell Biol 15: 5858–5867, 1995

    Google Scholar 

  14. Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone-Corsi P: Activation of the ovalbumin gene by the estrogen receptor involves the fos jun complex. Cell 63: 1267–1276, 1990

    Google Scholar 

  15. Alroy I, Towers TL, Freedman LP: Transcriptional repression of the interleukin-II gene by vitamin D3: Direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 15: 5789–5799, 1995

    Google Scholar 

  16. Sukovich DA, Mukherjee R, Benfield PA: A novel, cell-type-specific mechanism for estrogen receptor mediated gene activation in the absence of an estrogen-responsive element. Mol Cell Biol 14: 7134–7143, 1994

    Google Scholar 

  17. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O: Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90: 11162–11166, 1993

    Google Scholar 

  18. MacKenzie J: Irritation of the sexual apparatus. Am J Med Sci 87: 360, 1884

    Google Scholar 

  19. Ueland K, Parer JT: Effects of estrogens on the cardiovascular system of the ewe. Am J Obstet Gynecol 96: 400, 1966

    Google Scholar 

  20. Silva de Sa ME Meirelles RS: Vasodilatation effect of estrogen on the human umbilical artery. Gynecol Invest 8: 307, 1977

    Google Scholar 

  21. Horwitz KB, Horwitz LD: Canine vascular tissues are targets for androgens, estrogens, progestins and glucocorticoids. J Clin Invest 69: 750, 1982

    Google Scholar 

  22. Karas RH, Patterson BL, Mendelsohn ME: Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 98: 1943–1950, 1994

    Google Scholar 

  23. Hishikawa K, Nakaki K, Marumo T, Suzuki H, Kato R, Saruta T: Upregulation of nitric oxide synthase by estradiol in human aortic endothelial cells. FEBS Lett 360: 291–293, 1995

    Google Scholar 

  24. Rhee CY, Spaet TH, Stemerman MB, Lajam F, Shiang HH: Estrogen suppression of surgically induced vascular intima hyperplasia in rabbits. J Lab Clin Med 90: 77, 1977

    Google Scholar 

  25. Vargas R, Wroblewska B, Rego A, Hatch J, Ramwell PW: Estradiol inhibits smooth muscle cell proliferation of pig coronary artery. Br J Pharmacol 109: 612–617, 1993

    Google Scholar 

  26. Grohé C, Briesemeister G, Stimpel L, Karas RH, Vetter H, Neyses L: Functional estrogen receptors in myocardial and myogenic cells. Circulation 90: I-538, 1994

    Google Scholar 

  27. Morano I, Gagelmann M, Arner A, Ganten U, Ruegg JC: Myosin isoenzymes of vascular smooth and cardiac muscle in the spontaneously hypertensive and normotensive male and female rat: A comparative study. Circ Res 59: 456–462, 1986

    Google Scholar 

  28. Malhotra A, Buttrick P, Scheuer J: Effects of sex hormones on development of physiological and pathological cardiac hypertrophy in male and female rats. Am J Physiol 259: H866-H871, 1990

    Google Scholar 

  29. Morano I, Gerstner J, Rilegg JC, Ganten U: Regulation of myosin heavy chain expression in the hearts of hypertensive rats by testosterone. Circ Res 66: 1585–1590, 1990

    Google Scholar 

  30. Neysess L, Pelzer T: The biological cascade leading to hypertrophy. Eur Heart J 16 (suppl. N): 8–11, 1996

    Google Scholar 

  31. Neyses, Nouskas J, Luycken J, Fronhoffs S, Oberdorf S, Williams RS, Sukhatme VP, Vetter H: Induction of immediate-early genes by angiotensin-II and ndothelin- 1 in adult rat cardiomyocytes. J Hypertens 11: 927–934, 1993

    Google Scholar 

  32. Dubik D, Dembinski TC, Shin RPC:Stimulation of the c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 47: 6517–6521, 1987

    Google Scholar 

  33. Weisz A, Rosales R: Identification of an estrogen response element upstream of the human c-fos gene that binds the estrogen receptor and the AP-1 transcription factor. Nucleic Acids Res 18: 5097–5106, 1990

    Google Scholar 

  34. Ciardiello L, Sica V, Bresciani F, Weisz A: Identification of a specific pattern of ‘immediate-early’ gene activation induced by estrogen during mitogenic stimulation of rat uterine cells. Receptor 3: 17–30, 1993

    Google Scholar 

  35. Neyses L, Nouskas J, Vetter H: Inhibition of endothelin- 1 induced myocardial protein synthesis by an antisense oligonucleotide against the early growth response gene- 1. Biochem Biophys Res Commun 181:22–27, 1991

    Google Scholar 

  36. Thayer MJ, Tapscott SJ, Davis RL, Wright WE, Lassar AB, Weintraub H: Positive autoregulation of the myogenic determination gene myoD1. Cell 58: 241–248, 1989

    Google Scholar 

  37. Beyer EC, Paul DL, Goodenough DA: The connexin family of gap junction proteins. J Membrane Biol 116: 187–194, 1990

    Google Scholar 

  38. Willecke K, Hennemann H, Dahl E, Jungbluth S,Heynkes R: The diversity of connexin genes encoding gapjunctional proteins. Eur J Cell Biol 56: 1–7, 1991

    Google Scholar 

  39. De Leon JR, Buttrick PM, Fishman GL: Functional analysis of the connexin-43 gene promoter in vivo and in vitro. J Mol Cell Cardiol 26: 379–389, 1994

    Google Scholar 

  40. Yu W, Dahl G, Werner R: The connexin-43 gene is responsive to estrogen. Proc R Soc Lond 255: 125–132, 1994

    Google Scholar 

  41. Bastide B, Neyses L, Ganten D, Paul M, Willecke K, Traub O: The gap junction protein connexin-40 is preferentially expressed in vascular endothelium as well as conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ Res 73: 1138–1149, 1993

    Google Scholar 

  42. Weiner C, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S: Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Nail Acad Sci 91: 5212–5216, 1994

    Google Scholar 

  43. Proudler AJ, Ahmed A1H, Crook D, Fogelman I, Rymer JM, Stevenson JC: Hormone replacement therapy and serum angiotensin-convertingenzyme activity in postmenopausal women. Lancet 346: 89–90, 1995

    Google Scholar 

  44. Testut P, Soubrier F, Corvol P, Hubert C: Functional analysis of the human somatic angiotensin-I converting enzyme gene promoter. Biochem J 293: 843–848, 1993

    Google Scholar 

  45. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO: Acute vascular effects of estrogen in postmenopausal women. Circulation 90: 786–791, 1994

    Google Scholar 

  46. Brass LM, Kisiel D, Sarrel PM: A correlation between estrogen and middle cerebral artery blood velocity at different times of the menstrual cycle in women with catamenial migraines. J Cardiovasc Technol 9:68, 1990

    Google Scholar 

  47. Williams JK, Adams MR, Klopfenstein HS: Estrogen modulates responses of atherosclerotic coronary arteries. Cire Res 81: 1680–1687, 1990

    Google Scholar 

  48. Jiang C, Sarrel PM, Lindsay DC, Poole-Wilson PA, Collins P: Endothelium-independent relaxation of rabbit coronary artery by 17ßestradiol in vitro. Br J Pharmacol 104: 1033–1037, 1991

    Google Scholar 

  49. Van Buren G, Yang D, Clark KE: Estrogen-induced uterine vasodilatation is antagonized by L-nitroarginine methyl ester, an inhibitor of nitric oxide synthesis. Am J Obstet Gynecol 16: 828–833, 1992

    Google Scholar 

  50. Jiang C, Poole-Wilson PA, Sarrel PM, Mochizuki S, Collins P, McLeod KT: Effect of 17ß-estradiol on concentration, Ca2+. current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br J Pharmacol 106:739–745, 1992

    Google Scholar 

  51. Han SZ, Karaki H, Ouchi Y, Akishita M, Orimo H: 17ß-estradiol inhibits Ca2+ influx and Ca+ release induced by thromboxane in porcine coronary artery. Circulation 91:2619–2626, 1995

    Google Scholar 

  52. White RE, Darkow DJ, Falvo Lang JL: Estrogen relaxes coronary arteries by opening BkCa channels through a cGMP-dependent mechanism. Circ Res 77: 936–942, 1995

    Google Scholar 

  53. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240: 889–895, 1988

    Google Scholar 

  54. Beato M, Herrlich P, Schütz G: Steroid hormone receptors: Many actors in search for a plot. Cell 83: 851–857, 1995

    Google Scholar 

  55. Xie QW, Cho H, Calaycay J, Murnford R, Swiderek KM, Lee TB, Ding A, Troso T, Nathan C: Cloning and characterization of inducible nitric oxide synthase from mouse macrophage. Science 256: 225–228, 1992

    Google Scholar 

  56. Xie QW, Whisnant R, Nathan C: Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon-gamins and bacterial lipopolysaccharides. J Exp Med 177: 1779–1784, 1993

    Google Scholar 

  57. Chang WC, Nakao J, Orimo H, Murota SI Stimulation of prostaglandin cyclooxygenase and prostacyclin synthase activities by estradiol in rat aortic smooth muscle cells. Biochem Biophys Acta 620: 472, 1980

    Google Scholar 

  58. Katzenellenbogen BS, Nardulli AM, Read LD: Estrogen regulation of proliferation and hormonal modulation of estrogen and progesterone receptor biosynthesis and degradation in target cells. Prog Clin Biol Res 322: 201–211, 1990

    Google Scholar 

  59. Cembran J, Lillo M, Val J, Mardones J: Influence of sex difference and hormones on elastin and collagen in aorta of chickens. Circ Res 8: 527, 1960

    Google Scholar 

  60. Kenney NJ, Saeki T, Gottardis M, Kim N, Garcia-Morales P, Martin MB, Normanno M, Ciardiello F, Day A, Butler ML, Salomon DS: Expression of transforming growth factor a antisense mRNA inhibits the estrogen-induced production of TGFa and estrogen-induced proliferation of estrogen-responsive human breast cancer cells. J Cell Physiol 156: 497–514, 1993

    Google Scholar 

  61. Pottratz ST, Bellido T, Mocharia H, Crabb D, Manolagas SC: 17β-estradiol inhibits expression of human interleukin-6 promoter-reporter constructs by a receptor-dependent mechanism J Clin Invest 93: 944–950, 1994

    Google Scholar 

  62. Michels KM, Lee WH, Seltzer A, Saavedra JM, Bondy CA: Up-regulation of pituitary [125] insulin-like growth factor-I (IGF-I) binding and IGF-I binding protein-2 and IGF-I gene expression by estrogen. Endocrinology 132: 23–29, 1993

    Google Scholar 

  63. Fuqua SAW, Blum-Saringos M, McGuire WL: Induction of the estrogen-regulated ‘24K’ protein by heat shock. Cancer Res 49: 4126, 1984

    Google Scholar 

  64. Mendelsohn ME, Zhu Y, O'Neill S: The 29 kDa proteins phosphorylated in thrombin-activated platelets are forms of the estrogen receptor-related 27 kDa heat shock protein. Proc Natl Acad Sci USA 88: 11212–11216, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelzer, T., Shamim, A. & Neyses, L. Estrogen effects in the heart. Mol Cell Biochem 160, 307–313 (1996). https://doi.org/10.1007/BF00240064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240064

Key words

Navigation