Skip to main content

Advertisement

Log in

The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

CircRNA:

Circular RNA

ccRCC:

Clear cell renal cell carcinoma

RCC:

Renal cell carcinoma

BCa:

Bladder cancer

NcRNA:

Non-coding RNA

LncRNA:

Long-stranded non-coding RNA

EcircRNA:

Exon circRNA

EIcircRNA:

Exon-intron circRNA

CiRNA:

Circular intronic RNA

TricRNA:

tRNA intronic circular RNA

RBP:

RNA-binding proteins

miRNA:

microRNA

AR:

Androgen receptor

U1 snRNPs:

U1 small nuclear ribonucleoproteins

m6A:

N6-methyladenosine

EMT:

Epithelial-mesenchymal transition

CRPC:

Castration-resistant prostate cancer

OS:

Overall survival

MIBC:

Muscle-invasive bladder cancer

DFS:

Disease-free survival

AON:

Antisense oligonucleotides

pre-mRNAs:

precursor mRNAs

CSC:

Cancer stem cell

ACC:

Adrenocortical carcinoma

HPV:

Human papillomavirus

HIF-2:

Hypoxia-inducible factor 2

ceRNA:

Competing endogenous RNA

TFs:

Transcription factors

ADT:

Anti-androgen therapy

CRISPR:

Clustered regularly interspaced short palindromic repeat

EGR1:

Early growth response factor 1

EMT:

Epithelial–mesenchymal transition

FGFR2:

Fibroblast growth factor receptor 2

HNRNPL:

Heterogeneous nuclear ribonucleoprotein L

IGF2BP1:

Insulin-like growth factor 2 mRNA-binding protein 1

MMP:

Matrix metalloproteinase

siRNA:

Small interfering RNA

STAT3:

Signal transducer and activator of transcription 3

TF:

Transcription factor

TIMP-3:

Tissue inhibitor of matrix metalloproteinase-3

UTR:

Untranslated region

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(1), 17–48.

    PubMed  Google Scholar 

  2. Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67(2), 93–99.

    PubMed  Google Scholar 

  3. Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell., 147(2), 275–292.

    Article  CAS  PubMed  Google Scholar 

  4. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.

    Article  CAS  PubMed  Google Scholar 

  5. Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., & Calin, G. A. (2023). Going circular: history, present, and future of circRNAs in cancer. Oncogene, 42.

  6. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.

    Article  CAS  PubMed  Google Scholar 

  7. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature., 495(7441), 333–338.

    Article  CAS  PubMed  Google Scholar 

  8. Li, X., Ding, J., Wang, X., Cheng, Z., & Zhu, Q. (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene., 39(4), 891–904.

    Article  PubMed  Google Scholar 

  9. Zeng, Z., Xia, L., Fan, S., Zheng, J., Qin, J., Fan, X., et al. (2021). Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle cell differentiation. Circulation., 143(4), 354–371.

    Article  CAS  PubMed  Google Scholar 

  10. van Zonneveld, A. J., Kölling, M., Bijkerk, R., & Lorenzen, J. M. (2021). Circular RNAs in kidney disease and cancer. Nature Reviews Nephrology, 17(12), 814–826.

    Article  PubMed  Google Scholar 

  11. Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death & Disease, 10(7), 503.

    Article  Google Scholar 

  12. Wang, Y., Zhang, Y., Wang, P., Fu, X., & Lin, W. (2020). Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Molecular Cancer, 19(1), 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, X., Ye, T., Liu, H., Lv, P., Duan, C., Wu, X., et al. (2021). Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Molecular Cancer, 20(1), 4.

    Article  CAS  PubMed  Google Scholar 

  14. Hua, J. T., Chen, S., & He, H. H. (2019). Landscape of noncoding RNA in prostate cancer. Trends in Genetics : TIG, 35(11), 840–851.

    Article  CAS  PubMed  Google Scholar 

  15. Goodall, G. J., & Wickramasinghe, V. O. (2021). RNA in cancer. Nature Reviews Cancer, 21(1), 22–36.

    Article  CAS  PubMed  Google Scholar 

  16. Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 24(2), 194.

    Article  CAS  Google Scholar 

  19. Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., et al. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA (New York, NY)., 21(9), 1554–1565.

    Article  CAS  Google Scholar 

  20. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.

    Article  CAS  PubMed  Google Scholar 

  21. Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., et al. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, F., Xiao, X., Tao, D., Huang, C., Wang, L., Liu, F., et al. (2020). circNR3C1 suppresses bladder cancer progression through acting as an endogenous blocker of BRD4/C-myc complex. Molecular Therapy--Nucleic Acids, 22, 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.

    Article  Google Scholar 

  24. Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, N.Y.), 268(5209), 415–417.

    Article  CAS  PubMed  Google Scholar 

  25. Hogg, S. J., Beavis, P. A., Dawson, M. A., & Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 19(11), 776–800.

    Article  CAS  PubMed  Google Scholar 

  26. Weigel, C., Veldwijk, M. R., Oakes, C. C., Seibold, P., Slynko, A., Liesenfeld, D. B., et al. (2016). Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 7, 10893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pietri, E., Conteduca, V., Andreis, D., Massa, I., Melegari, E., Sarti, S., et al. (2016). Androgen receptor signaling pathways as a target for breast cancer treatment. Endocrine-Related Cancer, 23(10), R485–R498.

    Article  CAS  PubMed  Google Scholar 

  28. Yin, J., Liu, Y. N., Tillman, H., Barrett, B., Hewitt, S., Ylaya, K., et al. (2014). AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Research, 74(16), 4306–4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, L., Huang, W., Bai, X., Wang, H., Wang, X., Xiao, H., et al. (2023). Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death & Disease, 14(6), 363.

    Article  CAS  Google Scholar 

  30. Deng, G., Wang, R., Sun, Y., Huang, C. P., Yeh, S., You, B., et al. (2021). Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 28(7), 2145–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, J., Sun, Y., Ou, Z., Yeh, S., Huang, C. P., You, B., et al. (2020). Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Reports, 21(4), e48467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Z., Qu, C. B., Zhang, Y., Zhang, W. F., Wang, D. D., Gao, C. C., et al. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 38(14), 2516–2532.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, T. K., & Shiekhattar, R. (2015). Architectural and functional commonalities between enhancers and promoters. Cell, 162(5), 948–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, W., Cen, S., Zhou, X., Yang, T., Wu, K., Zou, L., et al. (2020). Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Frontiers in Cell and Development Biology, 8, 624764.

    Article  Google Scholar 

  35. Han, Z., Zhang, Y., Sun, Y., Chen, J., Chang, C., Wang, X., et al. (2018). ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Research, 78(10), 2550–2563.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell., 127(4), 679–695.

    Article  CAS  PubMed  Google Scholar 

  37. Vanharanta, S., & Massagué, J. (2013). Origins of metastatic traits. Cancer Cell, 24(4), 410–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.

    Article  CAS  PubMed  Google Scholar 

  40. Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Slattum, G. M., & Rosenblatt, J. (2014). Tumour cell invasion: An emerging role for basal epithelial cell extrusion. Nature Reviews Cancer, 14(7), 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, W., Yang, F. Q., Sun, C. M., Huang, J. H., Zhang, H. M., Li, X., et al. (2020). circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Theranostics, 10(10), 4395–4409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nielsen, J., Kristensen, M. A., Willemoës, M., Nielsen, F. C., & Christiansen, J. (2004). Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Research, 32(14), 4368–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xie, F., Huang, C., Liu, F., Zhang, H., Xiao, X., Sun, J., et al. (2021). CircPTPRA blocks the recognition of RNA N(6)-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Molecular Cancer, 20(1), 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017). Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Research, 27(5), 626–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., et al. (2015). 5’ UTR m(6)A promotes Cap-independent translation. Cell, 163(4), 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., et al. (2019). Exosomal circRNAs: Biogenesis, effect and application in human diseases. Molecular Cancer, 18(1), 116.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen, X., Chen, R. X., Wei, W. S., Li, Y. H., Feng, Z. H., Tan, L., et al. (2018). PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(24), 6319–6330.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, C., Wu, S., Mou, Z., Zhou, Q., Dai, X., Ou, Y., et al. (2022). Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Molecular Therapy : The Journal of the American Society of Gene Therapy, 30(3), 1054–1070.

    Article  CAS  PubMed  Google Scholar 

  50. Tang, Y., Liu, J., Li, X., & Wang, W. (2021). Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. Journal of Biosciences, 46.

  51. Ding, L., Zheng, Q., Lin, Y., Wang, R., Wang, H., Luo, W., et al. (2023). Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clinical and Translational Medicine, 13(1), e1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cen, J., Liang, Y., Huang, Y., Pan, Y., Shu, G., Zheng, Z., et al. (2021). Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Molecular Cancer, 20(1), 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, Q., Liu, T., Feng, H., Yang, R., Zhao, X., Chen, W., et al. (2019). Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular Cancer, 18(1), 111.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chao, F., Song, Z., Wang, S., Ma, Z., Zhuo, Z., Meng, T., et al. (2021). Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clinical and Translational Medicine, 11(3), e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen, Z., Zhou, L., Zhang, C., & Xu, J. (2020). Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Letters, 468, 88–101.

    Article  CAS  PubMed  Google Scholar 

  56. Yang, C., Yuan, W., Yang, X., Li, P., Wang, J., Han, J., et al. (2018). Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Molecular Cancer, 17(1), 19.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dong, W., Bi, J., Liu, H., Yan, D., He, Q., Zhou, Q., et al. (2019). Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Molecular Cancer, 18(1), 95.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang, X., Liu, X., Jing, Z., Bi, J., Li, Z., Liu, X., et al. (2020). The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Therapy, 27(3–4), 189–202.

    Article  CAS  PubMed  Google Scholar 

  59. Else, T., Kim, A. C., Sabolch, A., Raymond, V. M., Kandathil, A., Caoili, E. M., et al. (2014). Adrenocortical carcinoma. Endocrine Reviews, 35(2), 282–326.

    Article  CAS  PubMed  Google Scholar 

  60. Li, W., Liu, R., Wei, D., Zhang, W., Zhang, H., Huang, W., et al. (2020). Circular RNA circ-CCAC1 facilitates adrenocortical carcinoma cell proliferation, migration, and invasion through regulating the miR-514a-5p/C22orf46 axis. BioMed Research International, 2020, 3501451.

    PubMed  PubMed Central  Google Scholar 

  61. Hakenberg, O. W., Dräger, D. L., Erbersdobler, A., Naumann, C. M., Jünemann, K. P., & Protzel, C. (2018). The diagnosis and treatment of penile cancer. Deutsches Ärzteblatt International, 115(39), 646–652.

    PubMed  Google Scholar 

  62. Heideman, D. A., Waterboer, T., Pawlita, M., Delis-van Diemen, P., Nindl, I., Leijte, J. A., et al. (2007). Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(29), 4550–4556.

    Article  PubMed  Google Scholar 

  63. Bonelli, P., Borrelli, A., Tuccillo, F. M., Buonaguro, F. M., & Tornesello, M. L. (2021). The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers, 13(5).

  64. Bockhorn, M., Jain, R. K., & Munn, L. L. (2007). Active versus passive mechanisms in metastasis: Do cancer cells crawl into vessels, or are they pushed? The Lancet Oncology, 8(5), 444–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, Y., Xu, J., & Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. Journal of Hematology & Oncology, 12(1), 76.

    Article  Google Scholar 

  66. Dua, R. S., Gui, G. P., & Isacke, C. M. (2005). Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. European Journal of Surgical Oncology : The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 31(8), 824–832.

    Article  CAS  PubMed  Google Scholar 

  67. Follain, G., Herrmann, D., Harlepp, S., Hyenne, V., Osmani, N., Warren, S. C., et al. (2020). Fluids and their mechanics in tumour transit: shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.

    Article  CAS  PubMed  Google Scholar 

  68. Cheng, X., & Cheng, K. (2021). Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Reviews, 40(1), 71–88.

    Article  PubMed  Google Scholar 

  69. Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dufies, M., Giuliano, S., Ambrosetti, D., Claren, A., Ndiaye, P. D., Mastri, M., et al. (2017). Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas. Cancer Research, 77(5), 1212–1226.

    Article  CAS  PubMed  Google Scholar 

  71. Ndiaye, P. D., Dufies, M., Giuliano, S., Douguet, L., Grépin, R., Durivault, J., et al. (2019). VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Theranostics, 9(3), 661–675.

    Article  CAS  PubMed  Google Scholar 

  72. Nisato, R. E., Tille, J. C., & Pepper, M. S. (2003). Lymphangiogenesis and tumor metastasis. Thrombosis and Haemostasis, 90(4), 591–597.

    Article  CAS  PubMed  Google Scholar 

  73. Zhong, Z., Huang, M., Lv, M., He, Y., Duan, C., Zhang, L., et al. (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters, 403, 305–317.

    Article  CAS  PubMed  Google Scholar 

  74. Dai, Y., Li, D., Chen, X., Tan, X., Gu, J., Chen, M., et al. (2018). Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 3462–3471.

    Article  CAS  PubMed  Google Scholar 

  75. Li, J., Huang, C., Zou, Y., Yu, J., & Gui, Y. (2020). Circular RNA MYLK promotes tumour growth and metastasis via modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 24(12), 6609–6621.

    Article  CAS  PubMed  Google Scholar 

  76. Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis, 25(4), 305–324.

    Article  CAS  Google Scholar 

  77. Sadik, C. D., Kim, N. D., & Luster, A. D. (2011). Neutrophils cascading their way to inflammation. Trends in Immunology, 32(10), 452–460.

    Article  CAS  PubMed  Google Scholar 

  78. García-Román, J., & Zentella-Dehesa, A. (2013). Vascular permeability changes involved in tumor metastasis. Cancer Letters, 335(2), 259–269.

    Article  PubMed  Google Scholar 

  79. Sawant Dessai, A., Dominguez, M. P., Chen, U. I., Hasper, J., Prechtl, C., Yu, C., et al. (2021). Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 81(1), 50–63.

    PubMed  Google Scholar 

  80. Gilardi, M., Bersini, S., Valtorta, S., Proietto, M., Crippa, M., Boussommier-Calleja, A., et al. (2021). The driving role of the Cdk5/Tln1/FAK(S732) axis in cancer cell extravasation dissected by human vascularized microfluidic models. Biomaterials, 276, 120975.

    Article  CAS  PubMed  Google Scholar 

  81. Liu, H., Bi, J., Dong, W., Yang, M., Shi, J., Jiang, N., et al. (2018). Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Molecular Cancer, 17(1), 161.

    Article  CAS  PubMed  Google Scholar 

  82. Cruz-Munoz, W., Sanchez, O. H., Di Grappa, M., English, J. L., Hill, R. P., & Khokha, R. (2006). Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp-3-/- mice. Oncogene, 25(49), 6489–6496.

    Article  CAS  PubMed  Google Scholar 

  83. Xie, X., Sun, F. K., Huang, X., Wang, C. H., Dai, J., Zhao, J. P., et al. (2021). A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 13(15), 19908–19919.

    Article  CAS  PubMed  Google Scholar 

  84. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    Article  CAS  PubMed  Google Scholar 

  85. Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Research, 40(7), 2281–2287.

    CAS  PubMed  Google Scholar 

  86. Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science (New York, N.Y.), 352(6282), 169–175.

    Article  CAS  PubMed  Google Scholar 

  87. Ntziachristos, P., Lim, J. S., Sage, J., & Aifantis, I. (2014). From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell, 25(3), 318–334.

    Article  CAS  PubMed  Google Scholar 

  88. Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., et al. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355–367.

    Article  CAS  PubMed  Google Scholar 

  89. Huang, Z., Ding, Y., Zhang, L., He, S., Jia, Z., Gu, C., et al. (2020). Upregulated circPDK1 promotes RCC cell migration and invasion by regulating the miR-377-3P-NOTCH1 axis in renal cell carcinoma. OncoTargets and Therapy, 13, 11237–11252.

    Article  CAS  PubMed  Google Scholar 

  90. Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.

    Article  CAS  PubMed  Google Scholar 

  91. Yang, C., Wu, S., Wu, X., Zhou, X., Jin, S., & Jiang, H. (2019). Silencing circular RNA UVRAG inhibits bladder cancer growth and metastasis by targeting the microRNA-223/fibroblast growth factor receptor 2 axis. Cancer Science, 110(1), 99–106.

    Article  CAS  PubMed  Google Scholar 

  92. Li, L., Ameri, A. H., Wang, S., Jansson, K. H., Casey, O. M., Yang, Q., et al. (2019). EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 38(35), 6241–6255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, J., Zhong, C., Luo, J., Shu, F., Lv, D., Liu, Z., et al. (2021). HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Molecular Therapy--Nucleic Acids, 26, 927–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 221, 107753.

    Article  CAS  Google Scholar 

  95. Hinshaw, D. C., & Shevde, L. A. (2019). The tumor microenvironment innately modulates cancer progression. Cancer Research, 79(18), 4557–4566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiang, X., Wang, J., Lu, D., & Xu, X. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduction and Targeted Therapy, 6(1), 75.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang, X., Wang, J., Guan, J., Zheng, Z., Hao, J., Sheng, Z., et al. (2022). Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Frontiers in Oncology, 12, 808888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Du, C., Yan, Q., Wang, Y., Ren, L., Lu, H., Han, M., et al. (2023). Circular RNA AGAP1 stimulates immune escape and distant metastasis in renal cell carcinoma. Molecular Biotechnology, 66.

  99. Lv, J., Li, K., Yu, H., Han, J., Zhuang, J., Yu, R., et al. (2023). HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. Journal of experimental & clinical cancer research : CR, 42(1), 41.

    Article  CAS  PubMed Central  Google Scholar 

  100. Sun, J., Zhang, H., Wei, W., Xiao, X., Huang, C., Wang, L., et al. (2023). Regulation of CD8(+) T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer. Oncogene, 42(15), 1247–1262.

    Article  CAS  PubMed  Google Scholar 

  101. Liu, Q., You, B., Meng, J., Huang, C. P., Dong, G., Wang, R., et al. (2022). Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Therapy, 29(12), 1988–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meng, M., & Wu, Y. C. (2022). LMX1B activated circular RNA GFRA1 modulates the tumorigenic properties and immune escape of prostate cancer. Journal of Immunology Research, 2022, 7375879.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Q., Zhang, H., Jiang, X., Qian, C., Liu, Z., & Luo, D. (2017). Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Molecular Cancer, 16(1), 176.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brodt, P. (2016). Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 22(24), 5971–5982.

    Article  CAS  PubMed  Google Scholar 

  106. Adekoya, T. O., & Richardson, R. M. (2020). Cytokines and chemokines as mediators of prostate cancer metastasis. International Journal of Molecular Sciences, 21(12).

  107. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bianchi, M., Sun, M., Jeldres, C., Shariat, S. F., Trinh, Q. D., Briganti, A., et al. (2012). Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 23(4), 973–980.

    Article  CAS  PubMed  Google Scholar 

  109. Grünwald, V., Eberhardt, B., Bex, A., Flörcken, A., Gauler, T., Derlin, T., et al. (2018). An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma. Nature Reviews Urology, 15(8), 511–521.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chow, W. H., Dong, L. M., & Devesa, S. S. (2010). Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 7(5), 245–257.

    Article  PubMed  Google Scholar 

  111. Gong, D., Sun, Y., Guo, C., Sheu, T. J., Zhai, W., Zheng, J., et al. (2021). Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clinical and Translational Medicine, 11(3), e353.

    Article  CAS  PubMed  Google Scholar 

  112. Altorki, N. K., Markowitz, G. J., Gao, D., Port, J. L., Saxena, A., Stiles, B., et al. (2019). The lung microenvironment: an important regulator of tumour growth and metastasis. Nature Reviews Cancer, 19(1), 9–31.

    Article  CAS  PubMed  Google Scholar 

  113. Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Y., Gu, Y., Han, Y., Zhang, Q., Jiang, Z., Zhang, X., et al. (2016). Tumor exosomal rnas promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 30(2), 243–256.

    Article  PubMed  Google Scholar 

  115. Li, W., Song, Y. Y., Rao, T., Yu, W. M., Ruan, Y., Ning, J. Z., et al. (2022). CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 26(6), 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  116. Liu, H., Hu, G., Wang, Z., Liu, Q., Zhang, J., Chen, Y., et al. (2020). circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics, 10(23), 10791–10807.

    Article  CAS  PubMed  Google Scholar 

  117. Lv, Q., Wang, G., Zhang, Y., Shen, A., Tang, J., Sun, Y., et al. (2021). CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma. Journal of Experimental & Clinical Cancer Research : CR, 40(1), 76.

    Article  CAS  Google Scholar 

  118. Liang, Y., Cen, J., Huang, Y., Fang, Y., Wang, Y., Shu, G., et al. (2022). CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug. Molecular Cancer, 21(1), 224.

    Article  CAS  PubMed  Google Scholar 

  119. Zhao, B., Huang, C., Pan, J., Hu, H., Liu, X., Zhang, K., et al. (2022). circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death & Disease, 13(12), 1030.

    Article  CAS  Google Scholar 

  120. Xie, F., Li, Y., Wang, M., Huang, C., Tao, D., Zheng, F., et al. (2018). Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular Cancer, 17(1), 144.

    Article  PubMed  Google Scholar 

  121. Bi, J., Liu, H., Dong, W., Xie, W., He, Q., Cai, Z., et al. (2019). Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Molecular Cancer, 18(1), 133.

    Article  PubMed  Google Scholar 

  122. Zhu, J., Luo, Y., Zhao, Y., Kong, Y., Zheng, H., Li, Y., et al. (2021). circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Molecular Therapy : The Journal of the American Society of Gene Therapy, 29(5), 1838–1852.

    Article  CAS  PubMed  Google Scholar 

  123. Su, H., Tao, T., Yang, Z., Kang, X., Zhang, X., Kang, D., et al. (2019). Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Molecular Cancer, 18(1), 27.

    Article  PubMed  Google Scholar 

  124. Gu, C., Zhou, N., Wang, Z., Li, G., Kou, Y., Yu, S., et al. (2018). circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Molecular Therapy--Nucleic Acids, 13, 633–641.

    Article  CAS  PubMed  Google Scholar 

  125. Li, Y., Kong, Y., An, M., Luo, Y., Zheng, H., Lin, Y., et al. (2023). ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. Journal of Experimental & Clinical Cancer Research : CR, 42(1), 191.

    Article  Google Scholar 

  126. Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., et al. (2020). Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. Journal of Cellular and Molecular Medicine, 24(1), 799–813.

    Article  CAS  PubMed  Google Scholar 

  127. Lilja, H., Ulmert, D., & Vickers, A. J. (2008). Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nature Reviews Cancer, 8(4), 268–278.

    Article  CAS  PubMed  Google Scholar 

  128. Unger, F. T., Witte, I., & David, K. A. (2015). Prediction of individual response to anticancer therapy: historical and future perspectives. Cellular and Molecular Life Sciences: CMLS, 72(4), 729–757.

    Article  CAS  PubMed  Google Scholar 

  129. Ragnarsson, O. (2020). Cushing’s syndrome - Disease monitoring: Recurrence, surveillance with biomarkers or imaging studies. Best Practice & Research. Clinical Endocrinology & Metabolism, 34(2), 101382.

    Article  Google Scholar 

  130. Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., et al. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY), 19(2), 141–157.

    Article  CAS  Google Scholar 

  131. Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–342.

    Article  PubMed  Google Scholar 

  132. Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58(5), 870–885.

    Article  CAS  PubMed  Google Scholar 

  133. Shen, T., Han, M., Wei, G., & Ni, T. (2015). An intriguing RNA species--Perspectives of circularized RNA. Protein & Cell, 6(12), 871–880.

    Article  CAS  Google Scholar 

  134. Wang, P. L., Bao, Y., Yee, M. C., Barrett, S. P., Hogan, G. J., Olsen, M. N., et al. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLoS One, 9(6), e90859.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Danan, M., Schwartz, S., Edelheit, S., & Sorek, R. (2012). Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 40(7), 3131–3142.

    Article  CAS  PubMed  Google Scholar 

  136. Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luo, J., Li, Y., Zheng, W., Xie, N., Shi, Y., Long, Z., et al. (2019). Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Molecular Therapy--Nucleic Acids, 18, 916–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dahl, M., Husby, S., Eskelund, C. W., Besenbacher, S., Fjelstrup, S., Côme, C., et al. (2022). Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: A study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia, 36(1), 177–188.

    Article  CAS  PubMed  Google Scholar 

  139. Zuo, L., Zhang, L., Zu, J., Wang, Z., Han, B., Chen, B., et al. (2020). Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke, 51(1), 319–323.

    Article  CAS  PubMed  Google Scholar 

  140. Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Research, 48(D1), D1031-D1d41.

    CAS  PubMed  Google Scholar 

  141. Williford, J. M., Wu, J., Ren, Y., Archang, M. M., Leong, K. W., & Mao, H. Q. (2014). Recent advances in nanoparticle-mediated siRNA delivery. Annual Review of Biomedical Engineering, 16, 347–370.

    Article  CAS  PubMed  Google Scholar 

  142. Yu, C., Zhang, Y., Wang, N., Wei, W., Cao, K., Zhang, Q., et al. (2022). Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA. Biomaterials Research, 26(1), 6.

    Article  CAS  PubMed  Google Scholar 

  143. Mao, W., Wang, K., Xu, B., Zhang, H., Sun, S., Hu, Q., et al. (2021). ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Molecular Cancer, 20(1), 142.

    Article  CAS  PubMed  Google Scholar 

  144. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 7, 11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Piwecka, M., Glažar, P., Hernandez-Miranda, L. R., Memczak, S., Wolf, S. A., Rybak-Wolf, A., et al. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science (New York, NY), 357(6357).

  147. Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139(25), 2857–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, S., Li, X., Xue, W., Zhang, L., Yang, L. Z., Cao, S. M., et al. (2021). Screening for functional circular RNAs using the CRISPR-Cas13 system. Nature Methods, 18(1), 51–59.

    Article  PubMed  Google Scholar 

  149. Bennett, C. F., & Swayze, E. E. (2010). RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50, 259–293.

    Article  CAS  PubMed  Google Scholar 

  150. Wesselhoeft, R. A., Kowalski, P. S., & Anderson, D. G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nature Communications, 9(1), 2629.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Verduci, L., Strano, S., Yarden, Y., & Blandino, G. (2019). The circRNA-microRNA code: Emerging implications for cancer diagnosis and treatment. Molecular Oncology, 13(4), 669–680.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Holdt, L. M., Kohlmaier, A., & Teupser, D. (2018). Circular RNAs as Therapeutic Agents and Targets. Frontiers in Physiology, 9, 1262.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wurster, S. E., & Maher, L. J., 3rd. (2008). Selection and characterization of anti-NF-kappaB p65 RNA aptamers. RNA (New York, NY), 14(6), 1037–1047.

    Article  CAS  Google Scholar 

  154. Filonov, G. S., Moon, J. D., Svensen, N., & Jaffrey, S. R. (2014). Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society, 136(46), 16299–16308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pfafenrot, C., Schneider, T., Müller, C., Hung, L. H., Schreiner, S., Ziebuhr, J., et al. (2021). Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Research, 49(21), 12502–12516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., et al. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 185(10), 1728–44.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Greene, J., Baird, A. M., Brady, L., Lim, M., Gray, S. G., McDermott, R., et al. (2017). Circular RNAs: Biogenesis, function and role in human diseases. Frontiers in Molecular Biosciences, 4, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shim, M. S., & Kwon, Y. J. (2010). Efficient and targeted delivery of siRNA in vivo. The FEBS Journal, 277(23), 4814–4827.

    Article  CAS  PubMed  Google Scholar 

  159. Huang, L., & Liu, Y. (2011). In vivo delivery of RNAi with lipid-based nanoparticles. Annual Review of Biomedical Engineering, 13, 507–530.

    Article  CAS  PubMed  Google Scholar 

  160. Fan, Q., Yang, L., Zhang, X., Peng, X., Wei, S., Su, D., et al. (2018). The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Letters, 414, 107–115.

    Article  CAS  PubMed  Google Scholar 

  161. Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63, 185–198.

    Article  CAS  PubMed  Google Scholar 

  162. Du, W. W., Fang, L., Yang, W., Wu, N., Awan, F. M., Yang, Z., et al. (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differentiation, 24(2), 357–370.

    Article  CAS  PubMed  Google Scholar 

  163. Liu, X., Zhang, Y., Zhou, S., Dain, L., Mei, L., & Zhu, G. (2022). Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. Journal of Controlled Release: Official Journal of the Controlled Release Society, 348, 84–94.

    Article  CAS  PubMed  Google Scholar 

  164. Li, H., Peng, K., Yang, K., Ma, W., Qi, S., Yu, X., et al. (2022). Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics, 12(14), 6422–6436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (grants 81672523), Xisike-Pilot Cancer Research Foundation (grants 20201030), and Applied Basic Research Program of Liaoning Province in 2023 (grants 2023010409133159830).

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration with all authors. YYZ identified the topic of the review and directed the completion of the article. YX, JL, and MY conceived the structure of the article; YX, ZPG, XYS, and DS drafted the original draft; YX, TO, and YYZ revised the article. All of the authors had participated in the preparation of this article.

Corresponding authors

Correspondence to Du Shi, Meng Yu or Yuyan Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Gao, Z., Sun, X. et al. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10182-x

Keywords

Navigation