Skip to main content
Log in

Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell–derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. https://doi.org/10.1038/s41556-018-0250-9

    Article  CAS  Google Scholar 

  2. Bebelman, M. P., Janssen, E., Pegtel, D. M., & Crudden, C. (2021). The forces driving cancer extracellular vesicle secretion. Neoplasia (New York, N. Y.), 23(1), 149–157. https://doi.org/10.1016/j.neo.2020.11.011

    Article  CAS  Google Scholar 

  3. Zhang, H. G., & Grizzle, W. E. (2011). Exosomes and cancer: A newly described pathway of immune suppression. Clinical Cancer Research, 17(5), 959–964. https://doi.org/10.1158/1078-0432.CCR-10-1489

    Article  CAS  Google Scholar 

  4. Zhang, C., Ji, Q., Yang, Y., Li, Q., & Wang, Z. (2018). Exosome: Function and role in cancer metastasis and drug resistance. Technology in Cancer Research & Treatment, 17, 1533033818763450. https://doi.org/10.1177/1533033818763450

    Article  CAS  Google Scholar 

  5. Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: Small particle, big player. Journal of Hematology & Oncology, 8, 83. https://doi.org/10.1186/s13045-015-0181-x

    Article  CAS  Google Scholar 

  6. Couto, N., Caja, S., Maia, J., Strano Moraes, M. C., & Costa-Silva, B. (2018). Exosomes as emerging players in cancer biology. Biochimie, 155, 2–10. https://doi.org/10.1016/j.biochi.2018.03.006

    Article  CAS  Google Scholar 

  7. McAndrews, K. M., & Kalluri, R. (2019). Mechanisms associated with biogenesis of exosomes in cancer. Molecular Cancer, 18(1), 52. https://doi.org/10.1186/s12943-019-0963-9

    Article  Google Scholar 

  8. Trams, E. G., Lauter, C. J., Salem, N., Jr., & Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta, 645(1), 63–70. https://doi.org/10.1016/0005-2736(81)90512-5

    Article  CAS  Google Scholar 

  9. Sancho-Albero, M., Navascues, N., Mendoza, G., Sebastian, V., Arruebo, M., Martin-Duque, P., et al. (2019). Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnology, 17(1), 16. https://doi.org/10.1186/s12951-018-0437-z

    Article  Google Scholar 

  10. Ferguson, S. W., & Nguyen, J. (2016). Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. Journal of Controlled Release, 228, 179–190. https://doi.org/10.1016/j.jconrel.2016.02.037

    Article  CAS  Google Scholar 

  11. Sanderson, R. D., Bandari, S. K., & Vlodavsky, I. (2019). Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology, 75–76, 160–169. https://doi.org/10.1016/j.matbio.2017.10.007

    Article  CAS  Google Scholar 

  12. Zhang, L., & Yu, D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(2), 455–468. https://doi.org/10.1016/j.bbcan.2019.04.004

    Article  CAS  Google Scholar 

  13. Schubert, A., & Boutros, M. (2021). Extracellular vesicles and oncogenic signaling. Molecular Oncology, 15(1), 3–26. https://doi.org/10.1002/1878-0261.12855

    Article  Google Scholar 

  14. Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011

    Article  CAS  Google Scholar 

  15. Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335. https://doi.org/10.1038/nature15756

    Article  CAS  Google Scholar 

  16. García-Silva, S., Benito-Martín, A., Nogués, L., Hernández-Barranco, A., Mazariegos, M. S., Santos, V., et al. (2021). Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nature Cancer, 2(12), 1387–1405. https://doi.org/10.1038/s43018-021-00272-y

    Article  CAS  Google Scholar 

  17. Quesnel, A., Karagiannis, G. S., & Filippou, P. S. (2020). Extracellular proteolysis in glioblastoma progression and therapeutics. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(2), 188428. https://doi.org/10.1016/j.bbcan.2020.188428

    Article  CAS  Google Scholar 

  18. Yekula, A., Yekula, A., Muralidharan, K., Kang, K., Carter, B. S., & Balaj, L. (2019). Extracellular vesicles in glioblastoma tumor microenvironment. Frontiers in Immunology, 10, 3137. https://doi.org/10.3389/fimmu.2019.03137

    Article  CAS  Google Scholar 

  19. Tamkovich, S. N., Yunusova, N. V., Tugutova, E., Somov, A. K., Proskura, K. V., Kolomiets, L. A., et al. (2019). Protease cargo in circulating exosomes of breast cancer and ovarian cancer patients. Asian Pac J Cancer Prev, 20(1), 255–262. https://doi.org/10.31557/APJCP.2019.20.1.255

    Article  CAS  Google Scholar 

  20. Nawaz, M., Shah, N., Zanetti, B. R., Maugeri, M., Silvestre, R. N., Fatima, F., et al. (2018). Extracellular vesicles and matrix remodeling enzymes: The emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells, 7(10), https://doi.org/10.3390/cells7100167.

  21. Shimoda, M., & Khokha, R. (2013). Proteolytic factors in exosomes. PROTEOMICS, 13(10–11), 1624–1636. https://doi.org/10.1002/pmic.201200458

    Article  CAS  Google Scholar 

  22. Shimoda, M., & Khokha, R. (2017). Metalloproteinases in extracellular vesicles. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864(11, Part A), 1989–2000. https://doi.org/10.1016/j.bbamcr.2017.05.027

    Article  CAS  Google Scholar 

  23. Inamdar, S., Nitiyanandan, R., & Rege, K. (2017). Emerging applications of exosomes in cancer therapeutics and diagnostics. Bioengineering & Translational Medicine, 2(1), 70–80. https://doi.org/10.1002/btm2.10059

    Article  CAS  Google Scholar 

  24. Karagiannis, G. S., Pavlou, M. P., & Diamandis, E. P. (2010). Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Molecular Oncology, 4(6), 496–510. https://doi.org/10.1016/j.molonc.2010.09.001

    Article  CAS  Google Scholar 

  25. Bunggulawa, E. J., Wang, W., Yin, T., Wang, N., Durkan, C., Wang, Y., et al. (2018). Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology, 16(1), 81. https://doi.org/10.1186/s12951-018-0403-9

    Article  CAS  Google Scholar 

  26. Arrighetti, N., Corbo, C., Evangelopoulos, M., Pasto, A., Zuco, V., & Tasciotti, E. (2019). Exosome-like nanovectors for drug delivery in cancer. Current Medicinal Chemistry, 26(33), 6132–6148. https://doi.org/10.2174/0929867325666180831150259

    Article  CAS  Google Scholar 

  27. Doyle, L. M., & Wang, M. Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7), https://doi.org/10.3390/cells8070727.

  28. Javeed, N., & Mukhopadhyay, D. (2017). Exosomes and their role in the micro-/macro-environment: A comprehensive review. Journal of Biomedical Research, 31(5), 386–394. https://doi.org/10.7555/JBR.30.20150162

    Article  Google Scholar 

  29. Qin, W., Tsukasaki, Y., Dasgupta, S., Mukhopadhyay, N., Ikebe, M., & Sauter, E. R. (2016). Exosomes in human breast milk promote EMT. Clinical Cancer Research, 22(17), 4517–4524. https://doi.org/10.1158/1078-0432.CCR-16-0135

    Article  CAS  Google Scholar 

  30. Kalluri, R. (2016). The biology and function of exosomes in cancer. The Journal of Clinical Investigation, 126(4), 1208–1215. https://doi.org/10.1172/JCI81135

    Article  Google Scholar 

  31. Ghaemmaghami, A. B., Mahjoubin-Tehran, M., Movahedpour, A., Morshedi, K., Sheida, A., Taghavi, S. P., et al. (2020). Role of exosomes in malignant glioma: MicroRNAs and proteins in pathogenesis and diagnosis. Cell Communication and Signaling: CCS, 18(1), 120. https://doi.org/10.1186/s12964-020-00623-9

    Article  CAS  Google Scholar 

  32. Ruivo, C. F., Adem, B., Silva, M., & Melo, S. A. (2017). The biology of cancer exosomes: Insights and new perspectives. Cancer Research, 77(23), 6480–6488. https://doi.org/10.1158/0008-5472.can-17-0994

    Article  CAS  Google Scholar 

  33. Taraboletti, G., D’Ascenzo, S., Giusti, I., Marchetti, D., Borsotti, P., Millimaggi, D., et al. (2006). Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia, 8(2), 96–103. https://doi.org/10.1593/neo.05583

    Article  CAS  Google Scholar 

  34. Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., et al. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1), 59. https://doi.org/10.1186/s12964-020-0530-4

    Article  Google Scholar 

  35. Han, L., Lam, E. W. F., & Sun, Y. (2019). Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Molecular Cancer, 18(1), 59. https://doi.org/10.1186/s12943-019-0980-8

    Article  Google Scholar 

  36. Stoeck, A., Keller, S., Riedle, S., Sanderson, M. P., Runz, S., Le Naour, F., et al. (2006). A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. The Biochemical journal, 393(Pt 3), 609–618. https://doi.org/10.1042/BJ20051013

    Article  CAS  Google Scholar 

  37. Gutwein, P., Stoeck, A., Riedle, S., Gast, D., Runz, S., Condon, T. P., et al. (2005). Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clinical Cancer Research, 11(7), 2492–2501. https://doi.org/10.1158/1078-0432.ccr-04-1688

    Article  CAS  Google Scholar 

  38. Shimoda, M. (2019). Extracellular vesicle-associated MMPs: A modulator of the tissue microenvironment. Advances in Clinical Chemistry, 88, 35–66. https://doi.org/10.1016/bs.acc.2018.10.006

    Article  CAS  Google Scholar 

  39. Morad, G., & Moses, M. A. (2019). Brainwashed by extracellular vesicles: The role of extracellular vesicles in primary and metastatic brain tumour microenvironment. Journal of extracellular vesicles, 8(1), 1627164–1627164. https://doi.org/10.1080/20013078.2019.1627164

    Article  CAS  Google Scholar 

  40. Mu, W., Rana, S., & Zöller, M. (2013). Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia (New York, N.Y.), 15(8), 875–887. https://doi.org/10.1593/neo.13786

    Article  CAS  Google Scholar 

  41. Walker, C., Mojares, E., & Del Rio Hernandez, A. (2018). Role of extracellular matrix in development and cancer progression. Int J Mol Sci, 19(10), https://doi.org/10.3390/ijms19103028.

  42. Leeman, M. F., Curran, S., & Murray, G. I. (2003). New insights into the roles of matrix metalloproteinases in colorectal cancer development and progression. The Journal of Pathology, 201(4), 528–534. https://doi.org/10.1002/path.1466

    Article  CAS  Google Scholar 

  43. Hakulinen, J., Sankkila, L., Sugiyama, N., Lehti, K., & Keski-Oja, J. (2008). Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. Journal of Cellular Biochemistry, 105(5), 1211–1218. https://doi.org/10.1002/jcb.21923

    Article  CAS  Google Scholar 

  44. Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., et al. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology, 19(22), 1875–1885. https://doi.org/10.1016/j.cub.2009.09.059

    Article  CAS  Google Scholar 

  45. Castro-Castro, A., Marchesin, V., Monteiro, P., Lodillinsky, C., Rossé, C., & Chavrier, P. (2016). Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annual Review of Cell and Developmental Biology, 32, 555–576. https://doi.org/10.1146/annurev-cellbio-111315-125227

    Article  CAS  Google Scholar 

  46. Ginestra, A., Monea, S., Seghezzi, G., Dolo, V., Nagase, H., Mignatti, P., et al. (1997). Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. Journal of Biological Chemistry, 272(27), 17216–17222. https://doi.org/10.1074/jbc.272.27.17216

    Article  CAS  Google Scholar 

  47. Zhao, Y., Lyons, C. E., Jr., Xiao, A., Templeton, D. J., Sang, Q. A., Brew, K., et al. (2008). Urokinase directly activates matrix metalloproteinases-9: A potential role in glioblastoma invasion. Biochemical and biophysical research communications, 369(4), 1215–1220. https://doi.org/10.1016/j.bbrc.2008.03.038

    Article  CAS  Google Scholar 

  48. Schnaeker, E. M., Ossig, R., Ludwig, T., Dreier, R., Oberleithner, H., Wilhelmi, M., et al. (2004). Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: Prerequisite in human melanoma cell invasion. Cancer Research, 64(24), 8924–8931. https://doi.org/10.1158/0008-5472.can-04-0324

    Article  CAS  Google Scholar 

  49. Jacob, A., Linklater, E., Bayless, B. A., Lyons, T., & Prekeris, R. (2016). The role and regulation of Rab40b-Tks5 complex during invadopodia formation and cancer cell invasion. Journal of cell science, 129(23), 4341–4353. https://doi.org/10.1242/jcs.193904

    Article  CAS  Google Scholar 

  50. McCready, J., Sims, J. D., Chan, D., & Jay, D. G. (2010). Secretion of extracellular hsp90α via exosomes increases cancer cell motility: A role for plasminogen activation. BMC Cancer, 10(1), 294. https://doi.org/10.1186/1471-2407-10-294

    Article  CAS  Google Scholar 

  51. Lo Cicero, A., Majkowska, I., Nagase, H., Di Liegro, I., & Troeberg, L. (2012). Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biology, 31(4), 229–233. https://doi.org/10.1016/j.matbio.2012.02.005

    Article  CAS  Google Scholar 

  52. You, Y., Shan, Y., Chen, J., Yue, H., You, B., Shi, S., et al. (2015). Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer science, 106(12), 1669–1677. https://doi.org/10.1111/cas.12818

    Article  CAS  Google Scholar 

  53. Saber, S. H., Ali, H. E. A., Gaballa, R., Gaballah, M., Ali, H. I., Zerfaoui, M., et al. (2020). Exosomes are the driving force in preparing the soil for the metastatic seeds: Lessons from the prostate cancer. Cells, 9(3), 564. https://doi.org/10.3390/cells9030564

    Article  CAS  Google Scholar 

  54. Melo, S. A., Sugimoto, H., O’Connell, J. T., Kato, N., Villanueva, A., Vidal, A., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26(5), 707–721. https://doi.org/10.1016/j.ccell.2014.09.005

    Article  CAS  Google Scholar 

  55. Skog, J., Würdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature cell biology, 10(12), 1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  Google Scholar 

  56. Raimondi, L., De Luca, A., Amodio, N., Manno, M., Raccosta, S., Taverna, S., et al. (2015). Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget, 6(15), 13772–13789. https://doi.org/10.18632/oncotarget.3830

    Article  Google Scholar 

  57. Sánchez, C. A., Andahur, E. I., Valenzuela, R., Castellón, E. A., Fullá, J. A., Ramos, C. G., et al. (2016). Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget, 7(4), 3993–4008. https://doi.org/10.18632/oncotarget.6540

    Article  Google Scholar 

  58. Wang, J., Zhang, Q., Wang, D., Yang, S., Zhou, S., Xu, H., et al. (2020). Microenvironment-induced TIMP2 loss by cancer-secreted exosomal miR-4443 promotes liver metastasis of breast cancer. 235(7–8), 5722–5735, https://doi.org/10.1002/jcp.29507.

  59. Hatanaka, M., Higashi, Y., Fukushige, T., Baba, N., Kawai, K., Hashiguchi, T., et al. (2014). Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts. Anticancer Research, 34(12), 7091–7096.

    CAS  Google Scholar 

  60. Aoki, M., Koga, K., Hamasaki, M., Egawa, N., & Nabeshima, K. (2017). Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts. International Journal of Oncology, 50(6), 2229–2235. https://doi.org/10.3892/ijo.2017.3986

    Article  CAS  Google Scholar 

  61. Zhang, W., Zhao, P., Xu, X. L., Cai, L., Song, Z. S., Cao, D. Y., et al. (2013). Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells. PLoS ONE, 8(8), e67268. https://doi.org/10.1371/journal.pone.0067268

    Article  CAS  Google Scholar 

  62. Yokoi, A., Yoshioka, Y., Yamamoto, Y., Ishikawa, M., Ikeda, S. I., Kato, T., et al. (2017). Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nature Communications, 8, 14470. https://doi.org/10.1038/ncomms14470

    Article  Google Scholar 

  63. Dos Anjos Pultz, B., Andrés Cordero da Luz, F., Socorro Faria, S., Peixoto Ferreira de Souza, L., Cristina Brígido Tavares, P., Alonso Goulart, V., et al. (2017). The multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. 140(11), 2397–2407, https://doi.org/10.1002/ijc.30595.

  64. Maji, S., Chaudhary, P., Akopova, I., Nguyen, P. M., Hare, R. J., Gryczynski, I., et al. (2017). Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Molecular Cancer Research, 15(1), 93–105. https://doi.org/10.1158/1541-7786.Mcr-16-0163

    Article  CAS  Google Scholar 

  65. Stephens, D. C., Osunsanmi, N., Sochacki, K. A., Powell, T. W., & Taraska, J. W. (2019). Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells. 151(12), 1386–1403, https://doi.org/10.1085/jgp.201812299.

  66. Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30(6), 836–848. https://doi.org/10.1016/j.ccell.2016.10.009

    Article  CAS  Google Scholar 

  67. Peinado, H., Lavotshkin, S., & Lyden, D. (2011). The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Seminars in Cancer Biology, 21(2), 139–146. https://doi.org/10.1016/j.semcancer.2011.01.002

    Article  CAS  Google Scholar 

  68. Clancy, J. W., Sedgwick, A., Rosse, C., Muralidharan-Chari, V., Raposo, G., Method, M., et al. (2015). Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nature Communications, 6, 6919. https://doi.org/10.1038/ncomms7919

    Article  CAS  Google Scholar 

  69. Hoshino, D., Kirkbride, K. C., Costello, K., Clark, E. S., Sinha, S., Grega-Larson, N., et al. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports, 5(5), 1159–1168. https://doi.org/10.1016/j.celrep.2013.10.050

    Article  CAS  Google Scholar 

  70. Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., et al. (2001). Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. Journal of Cell Biology, 153(5), 893–904. https://doi.org/10.1083/jcb.153.5.893

    Article  CAS  Google Scholar 

  71. Colangelo, N. W., & Azzam, E. I. (2020). Extracellular vesicles originating from glioblastoma cells increase metalloproteinase release by astrocytes: The role of CD147 (EMMPRIN) and ionizing radiation. Cell Communication and Signaling, 18(1), 21. https://doi.org/10.1186/s12964-019-0494-4

    Article  CAS  Google Scholar 

  72. Shoucair, I., Weber Mello, F., Jabalee, J., Maleki, S., & Garnis, C. (2020). The role of cancer-associated fibroblasts and extracellular vesicles in tumorigenesis. Int J Mol Sci, 21(18), https://doi.org/10.3390/ijms21186837.

  73. Xu, G., Zhang, B., Ye, J., Cao, S., Shi, J., Zhao, Y., et al. (2019). Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression. International Journal of Biological Sciences, 15(11), 2320–2329. https://doi.org/10.7150/ijbs.33750

    Article  CAS  Google Scholar 

  74. Li, Y. Y., Tao, Y. W., Gao, S., Li, P., Zheng, J. M., Zhang, S. E., et al. (2018). Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. eBioMedicine, 36, 209–220. https://doi.org/10.1016/j.ebiom.2018.09.006

    Article  Google Scholar 

  75. Miyoshi, A., Kitajima, Y., Kido, S., Shimonishi, T., Matsuyama, S., Kitahara, K., et al. (2005). Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. British Journal of Cancer, 92(2), 252–258. https://doi.org/10.1038/sj.bjc.6602266

    Article  CAS  Google Scholar 

  76. Tauro, B. J., Mathias, R. A., Greening, D. W., Gopal, S. K., Ji, H., Kapp, E. A., et al. (2013). Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular and Cellular Proteomics, 12(8), 2148–2159. https://doi.org/10.1074/mcp.M112.027086

    Article  CAS  Google Scholar 

  77. Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760. https://doi.org/10.1002/ijc.20657

    Article  CAS  Google Scholar 

  78. Ramteke, A., Ting, H., Agarwal, C., Mateen, S., Somasagara, R., Hussain, A., et al. (2015). Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular Carcinogenesis, 54(7), 554–565. https://doi.org/10.1002/mc.22124

    Article  CAS  Google Scholar 

  79. Deep, G., Jain, A., Kumar, A., Agarwal, C., Kim, S., Leevy, W. M., et al. (2020). Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Molecular Carcinogenesis, 59(3), 323–332. https://doi.org/10.1002/mc.23157

    Article  CAS  Google Scholar 

  80. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

    Article  CAS  Google Scholar 

  81. Jakhar, R., & Crasta, K. (2019). Exosomes as emerging pro-tumorigenic mediators of the senescence-associated secretory phenotype. International journal of molecular sciences, 20(10), 2547. https://doi.org/10.3390/ijms20102547

    Article  CAS  Google Scholar 

  82. Wallis, R., Mizen, H., & Bishop, C. L. (2020). The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 189, 111263. https://doi.org/10.1016/j.mad.2020.111263

    Article  CAS  Google Scholar 

  83. Cavallo, F., De Giovanni, C., Nanni, P., Forni, G., & Lollini, P.-L. (2011). 2011: The immune hallmarks of cancer. Cancer immunology, immunotherapy : CII, 60(3), 319–326. https://doi.org/10.1007/s00262-010-0968-0

    Article  CAS  Google Scholar 

  84. Edsparr, K., Basse, P. H., Goldfarb, R. H., & Albertsson, P. (2011). Matrix metalloproteinases in cytotoxic lymphocytes impact on tumour infiltration and immunomodulation. Cancer microenvironment : Official journal of the International Cancer Microenvironment Society, 4(3), 351–360. https://doi.org/10.1007/s12307-010-0057-0

    Article  CAS  Google Scholar 

  85. Deryugina, E. I., Zajac, E., Juncker-Jensen, A., Kupriyanova, T. A., Welter, L., & Quigley, J. P. (2014). Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 16(10), 771–788. https://doi.org/10.1016/j.neo.2014.08.013

    Article  CAS  Google Scholar 

  86. Young, D., Das, N., Anowai, A., & Dufour, A. (2019). Matrix metalloproteases as influencers of the cells’ social media. Int J Mol Sci, 20(16), https://doi.org/10.3390/ijms20163847.

  87. Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266. https://doi.org/10.1016/j.cell.2006.01.007

    Article  CAS  Google Scholar 

  88. Sanchez, L. R., Borriello, L., Entenberg, D., Condeelis, J. S., Oktay, M. H., & Karagiannis, G. S. (2019). The emerging roles of macrophages in cancer metastasis and response to chemotherapy. Journal of Leukocyte Biology, 106(2), 259–274. https://doi.org/10.1002/jlb.mr0218-056rr

    Article  CAS  Google Scholar 

  89. Asiry, S., Kim, G., Filippou, P. S., Sanchez, L. R., Entenberg, D., Marks, D. K., et al. (2021). The cancer cell dissemination machinery as an immunosuppressive niche: A new obstacle towards the era of cancer immunotherapy. [Review]. Frontiers in Immunology, 12, https://doi.org/10.3389/fimmu.2021.654877.

  90. Chanmee, T., Ontong, P., Konno, K., & Itano, N. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 6(3), 1670–1690. https://doi.org/10.3390/cancers6031670

    Article  Google Scholar 

  91. Wu, Q., Wu, X., Ying, X., Zhu, Q., Wang, X., Jiang, L., et al. (2017). Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell International, 17, 62. https://doi.org/10.1186/s12935-017-0430-x

    Article  CAS  Google Scholar 

  92. Linton, S. S., Abraham, T., Liao, J., Clawson, G. A., Butler, P. J., Fox, T., et al. (2018). Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. 13(11), e0206759, https://doi.org/10.1371/journal.pone.0206759.

  93. Baig, M. S., Roy, A., Rajpoot, S., Liu, D., Savai, R., Banerjee, S., et al. (2020). Tumor-derived exosomes in the regulation of macrophage polarization. Inflammation Research, 69(5), 435–451. https://doi.org/10.1007/s00011-020-01318-0

    Article  CAS  Google Scholar 

  94. de Vrij, J., Maas, S. L., Kwappenberg, K. M., Schnoor, R., Kleijn, A., Dekker, L., et al. (2015). Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. International Journal of Cancer, 137(7), 1630–1642. https://doi.org/10.1002/ijc.29521

    Article  CAS  Google Scholar 

  95. Wu, J., Gao, W., Tang, Q., Yu, Y., You, W., Wu, Z., et al. (2021). M2 macrophage-derived exosomes facilitate HCC metastasis by transferring α(M) β(2) integrin to tumor cells. Hepatology, 73(4), 1365–1380. https://doi.org/10.1002/hep.31432

    Article  CAS  Google Scholar 

  96. Hon, K. W., Abu, N., Ab Mutalib, N.-S., & Jamal, R. (2017). Exosomes as potential biomarkers and targeted therapy in colorectal cancer: A mini-review. [Mini Review]. Frontiers in Pharmacology, 8(583), https://doi.org/10.3389/fphar.2017.00583.

  97. Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X. O., et al. (2009). Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100(10), 1603–1607. https://doi.org/10.1038/sj.bjc.6605058

    Article  CAS  Google Scholar 

  98. Sharma, R., Huang, X., Brekken, R. A., & Schroit, A. J. (2017). Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. British Journal of Cancer, 117(4), 545–552. https://doi.org/10.1038/bjc.2017.183

    Article  CAS  Google Scholar 

  99. Zhou, B., Xu, K., Zheng, X., Chen, T., Wang, J., Song, Y., et al. (2020). Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy, 5(1), 144. https://doi.org/10.1038/s41392-020-00258-9

    Article  CAS  Google Scholar 

  100. Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44–46, 200–206. https://doi.org/10.1016/j.matbio.2015.01.019

    Article  CAS  Google Scholar 

  101. Monea, S., Lehti, K., Keski-Oja, J., & Mignatti, P. (2002). Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. Journal of Cellular Physiology, 192(2), 160–170. https://doi.org/10.1002/jcp.10126

    Article  CAS  Google Scholar 

  102. Garimella, R., Washington, L., Isaacson, J., Vallejo, J., Spence, M., Tawfik, O., et al. (2014). Extracellular membrane vesicles derived from 143B osteosarcoma cells contain pro-osteoclastogenic cargo: A novel communication mechanism in osteosarcoma bone microenvironment. Translational Oncology, 7(3), 331–340. https://doi.org/10.1016/j.tranon.2014.04.011

    Article  Google Scholar 

  103. Reiner, A. T., Tan, S., Agreiter, C., Auer, K., Bachmayr-Heyda, A., Aust, S., et al. (2017). EV-associated MMP9 in high-grade serous ovarian cancer is preferentially localized to annexin V-binding EVs. Disease Markers, 2017, 9653194. https://doi.org/10.1155/2017/9653194

    Article  CAS  Google Scholar 

  104. Kucharzewska, P., Christianson, H. C., Welch, J. E., Svensson, K. J., Fredlund, E., Ringnér, M., et al. (2013). Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A, 110(18), 7312–7317. https://doi.org/10.1073/pnas.1220998110

    Article  Google Scholar 

  105. Zheng, J., Hernandez, J. M., Doussot, A., Bojmar, L., Zambirinis, C. P., Costa-Silva, B., et al. (2018). Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic cancer. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 20(7), 597–604. https://doi.org/10.1016/j.hpb.2017.12.010

    Article  Google Scholar 

  106. Keller, S., König, A. K., Marmé, F., Runz, S., Wolterink, S., Koensgen, D., et al. (2009). Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Letters, 278(1), 73–81. https://doi.org/10.1016/j.canlet.2008.12.028

    Article  CAS  Google Scholar 

  107. Yoneyama, T., Gorry, M., Sobo-Vujanovic, A., Lin, Y., Vujanovic, L., Gaither-Davis, A., et al. (2018). ADAM10 sheddase activity is a potential lung-cancer biomarker. Journal of Cancer, 9(14), 2559–2570. https://doi.org/10.7150/jca.24601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota S. Filippou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Agathe Quesnel and Amy Broughton are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesnel, A., Broughton, A., Karagiannis, G.S. et al. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 41, 789–801 (2022). https://doi.org/10.1007/s10555-022-10030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10030-w

Keywords

Navigation