Skip to main content

Advertisement

Log in

Compare and contrast: pediatric cancer versus adult malignancies

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer is a leading cause of death in both adults and children, but in terms of absolute numbers, pediatric cancer is a relatively rare disease. The rarity of pediatric cancer is consistent with our current understanding of how adult malignancies form, emphasizing the view of cancer as a genetic disease caused by the accumulation and selection of unrepaired mutations over time. However, considering those children who develop cancer merely as stochastically “unlucky” does not fully explain the underlying aetiology, which is distinct from that observed in adults. Here, we discuss the differences in cancer genetics, distribution, and microenvironment between adult and pediatric cancers and argue that pediatric tumours need to be seen as a distinct subset with their own distinct therapeutic challenges. While in adults, the benefit of any treatment should outweigh mostly short-term complications, potential long-term effects have a much stronger impact in children. In addition, clinical trials must cope with low participant numbers when evaluating novel treatment strategies, which need to address the specific requirements of children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nonnenmacher, L., Hasslacher, S., Zimmermann, J., Karpel-Massler, G., La Ferla-Brühl, K., Barry, S. E., et al. (2016). Cell death induction in cancer therapy and minus: past, present, and future. Critical Reviews in Oncogenesis, 21(3–4), 253–267.

    Article  PubMed  Google Scholar 

  2. Gelband, H., Jha, P., Sankaranarayanan, R., Gauvreau, C. L., & Horton, S. (2015). Disease control priorities, third edition (volume 3): cancer. The World Bank.

  3. Decker, W. K., da Silva, R. F., Sanabria, M. H., Angelo, L. S., Guimaraes, F., Burt, B. M., et al. (2017). Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Frontiers in Immunology, 8, 829–829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Arruebo, M., Vilaboa, N., Saez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., et al. (2011). Assessment of the evolution of cancer treatment therapies. Cancers, 3(3).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodman, L. S., Wintrobe, M. M., Dameshek, W., Goodman, M. J., Gilman, A., & McLennan, M. T. (1946). Nitrogen mustard therapy: use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. Journal of the American Medical Association, 132(3), 126–132.

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee S. The emperor of all maladies: a biography of cancer: Simon and Schuster; 2010.

    Google Scholar 

  7. Westhoff, M. A., Marschall, N., Grunert, M., Karpel-Massler, G., Burdach, S., & Debatin, K.-M. (2018). Cell death-based treatment of childhood cancer. Cell Death & Disease, 9(2), 116.

    Article  Google Scholar 

  8. Cunningham, R. M., Walton, M. A., & Carter, P. M. (2018). The major causes of death in children and adolescents in the United States. New England Journal of Medicine, 379(25), 2468–2475.

    Article  Google Scholar 

  9. Collaborators, G. C. C. (2019). The global burden of childhood and adolescent cancer in 2017: an analysis of the global burden of disease study 2017. The Lancet Oncology, 20(9), 1211–1225.

    Article  Google Scholar 

  10. Barone, A., Casey, D., McKee, A. E., & Reaman, G. (2019). Cancer drugs approved for use in children: Impact of legislative initiatives and future opportunities. Pediatric Blood & Cancer, 66(8), e27809.

    Article  Google Scholar 

  11. Choi, D. K., Helenowski, I., & Hijiya, N. (2014). Secondary malignancies in pediatric cancer survivors: perspectives and review of the literature. International Journal of Cancer, 135(8), 1764–1773.

    Article  CAS  PubMed  Google Scholar 

  12. Scholz-Kreisel, P., Kaatsch, P., Spix, C., Schmidberger, H., Marron, M., Grabow, D., et al. (2018). Second malignancies following childhood cancer treatment in Germany from 1980 to 2014. Dtsch Arztebl International, 115(23), 385–392.

    Google Scholar 

  13. Grunert, M., Kassubek, R., Danz, B., Klemenz, B., Hasslacher, S., Stroh, S., et al. (2018). Radiation and brain tumors: an overview. Critical Reviews in Oncogenesis, 23(1–2), 119–138.

    Article  PubMed  Google Scholar 

  14. Johnson, S. B., Park, H. S., Gross, C. P., & Yu, J. B. (2018). Use of alternative medicine for cancer and its impact on survival. JNCI: Journal of the National Cancer Institute, 110(1), 121–124.

    Article  Google Scholar 

  15. Westhoff, M. A., Bruhl, O., Nonnenmacher, L., Karpel-Massler, G., & Debatin, K. M. (2014). Killing me softly-future challenges in apoptosis research. International Journal of Molecular Sciences, 15(3), 3746–3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fletcher, J. I., Ziegler, D. S., Trahair, T. N., Marshall, G. M., Haber, M., & Norris, M. D. (2018). Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nature Reviews. Cancer, 18(6), 389–400.

    Article  CAS  PubMed  Google Scholar 

  17. Luria, S. E., & Delbruck, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28(6), 491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461.

    Article  PubMed  CAS  Google Scholar 

  19. Gatenby, R. A., Silva, A. S., Gillies, R. J., & Frieden, B. R. (2009). Adaptive therapy. Cancer Research, 69(11), 4894–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nonnenmacher, L., Westhoff, M. A., Fulda, S., Karpel-Massler, G., Halatsch, M. E., Engelke, J., Simmet, T., Corbacioglu, S., & Debatin, K. M. (2015). RIST: a potent new combination therapy for glioblastoma. International Journal of Cancer, 136(4), E173–E187.

    Article  CAS  PubMed  Google Scholar 

  21. Lam, S., Lin, Y., Zinn, P., Su, J., & Pan, I. W. (2018). Patient and treatment factors associated with survival among pediatric glioblastoma patients: a surveillance, epidemiology, and end results study. Journal of Clinical Neuroscience, 47, 285–293.

    Article  PubMed  Google Scholar 

  22. Debatin K. M, Burdach S. Präzisionsmedizin in der pädiatrischen Onkologie, Chancen und Perspektiven. Schwerpunkt2017: Therapeutische/Medizinische Fortschritte. Berufsverband der Kinder- und Jugendärzte e.V. (BVKJ). http://www.bvkj-shop.de/infomaterial/broschueren/schwerpunktbroschueren.html

  23. Doussau, A., Geoerger, B., Jimenez, I., & Paoletti, X. (2016). Innovations for phase I dose-finding designs in pediatric oncology clinical trials. Contemporary Clinical Trials, 47, 217–227.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D., & Adamson, P. C. (2008). Shortening the timeline of pediatric phase I trials: the rolling six design. Journal of Clinical Oncology, 26(2), 190–195.

    Article  PubMed  Google Scholar 

  25. Le Tourneau, C., Lee, J. J., & Siu, L. L. (2009). Dose escalation methods in phase I cancer clinical trials. Journal of the National Cancer Institute, 101(10), 708–720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ahmed, A. A., Zhang, L., Reddivalla, N., & Hetherington, M. (2017). Neuroblastoma in children: update on clinicopathologic and genetic prognostic factors. Pediatric Hematology and Oncology, 34(3), 165–185.

    Article  PubMed  Google Scholar 

  27. Tomasetti, C., & Vogelstein, B. (2015). Cancer risk: role of environment-response. Science, 347(6223), 729–731.

    Article  CAS  PubMed  Google Scholar 

  28. Tomasetti, C., & Vogelstein, B. (2017). On the slope of the regression between stem cell divisions and cancer risk, and the lack of correlation between stem cell divisions and environmental factors-associated cancer risk. PLoS One, 12(5), e0175535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Crossan, G. P., Garaycoechea, J. I., & Patel, K. J. (2015). Do mutational dynamics in stem cells explain the origin of common cancers? Cell Stem Cell, 16(2), 111–112.

    Article  CAS  PubMed  Google Scholar 

  30. Rozhok, A. I., Wahl, G. M., & DeGregori, J. (2015). A critical examination of the “bad luck” explanation of cancer risk. Cancer Prevention Research, 8(9), 762–764.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, S., Powers, S., Zhu, W., & Hannun, Y. A. (2016). Substantial contribution of extrinsic risk factors to cancer development. Nature, 529, 43.

    Article  CAS  PubMed  Google Scholar 

  32. Little, M. P., Hendry, J. H., & Puskin, J. S. (2016). Lack of correlation between stem-cell proliferation and radiation- or smoking-associated cancer risk. PLoS One, 11(3), e0150335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cancer Research UK: statistics on preventable cancers; retrieved 16. Oct. 2019 https://www.cancerresearchuk.org/health-professional/cancer-statistics/risk/preventable-cancers

  34. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: a Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  35. White, M. C., Holman, D. M., Boehm, J. E., Peipins, L. A., Grossman, M., & Henley, S. J. (2014). Age and cancer risk: a potentially modifiable relationship. American Journal of Preventive Medicine, 46(3 Suppl 1), S7–S15.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aunan, J. R., Cho, W. C., & Soreide, K. (2017). The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging and Disease, 8(5), 628–642.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nordling, C. O. (1953). A new theory on cancer-inducing mechanism. British Journal of Cancer, 7(1), 68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G., & Vogelstein, B. (2015). Only three driver gene mutations are required for the development of lung and colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 118–123.

    Article  CAS  PubMed  Google Scholar 

  40. Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., et al. (1988). Genetic alterations during colorectal-tumor development. New England Journal of Medicine, 319(9), 525–532.

    Article  CAS  Google Scholar 

  41. Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, R. W., Young Jr., J. L., & Novakovic, B. (1995). Childhood cancer. Cancer, 75(S1), 395–405.

    Article  CAS  PubMed  Google Scholar 

  43. The World Health Organisation: Global programme on evidence for health policy discussion paper no. 13; retrieved 20. Oct. 2019 https://www.who.int/healthinfo/paper13.pdf

  44. Yanik, F., Karamustafaoglu, Y. A., & Yoruk, Y. (2019). A rare mediastinal occurrence of neuroblastoma in an adult: case report. São Paulo Medical Journal, 137(1), 104–106.

    Article  PubMed  Google Scholar 

  45. Vargo, M. M. (2017). Brain tumors and metastases. Physical Medicine and Rehabilitation Clinics of North America, 28(1), 115–141.

    Article  PubMed  Google Scholar 

  46. Trichopoulos, D., MacMahon, B., & Cole, P. (1972). Menopause and breast cancer risk2. JNCI: Journal of the National Cancer Institute, 48(3), 605–613.

    CAS  PubMed  Google Scholar 

  47. Hamilton, A. S., & Mack, T. M. (2003). Puberty and genetic susceptibility to breast cancer in a case control study in twins. New England Journal of Medicine, 348(23), 2313–2322.

    Article  Google Scholar 

  48. Surakasula, A., Nagarjunapu, G. C., & Raghavaiah, K. V. (2014). A comparative study of pre- and post-menopausal breast cancer: risk factors, presentation, characteristics and management. Journal of research in pharmacy practice, 3(1), 12–18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bodicoat, D. H., Schoemaker, M. J., Jones, M. E., McFadden, E., Griffin, J., Ashworth, A., & Swerdlow, A. J. (2014). Timing of pubertal stages and breast cancer risk: The Breakthrough Generations Study. Breast Cancer Research, 16(1), R18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. DeGregori, J. (2013). Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene, 32(15), 1869–1875.

    Article  CAS  PubMed  Google Scholar 

  51. Monje, M. (2018). Open questions: why are babies rarely born with cancer? BMC Biology, 16(1), 129.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gale, K. B., Ford, A. M., Repp, R., Borkhardt, A., Keller, C., Eden, O. B., & Greaves, M. F. (1997). Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13950–13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Righolt, C., & Mai, S. (2012). Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes, Chromosomes and Cancer, 51(11), 975–981.

    Article  CAS  PubMed  Google Scholar 

  54. Sorzano, C. O. S., Pascual-Montano, A., Sanchez de Diego, A., Martenez-A, C., & van Wely, K. H. M. (2013). Chromothripsis: breakage-fusion-bridge over and over again. Cell Cycle (Georgetown, Texas), 12(13), 2016–2023.

    Article  CAS  Google Scholar 

  55. Koltsova, A. S., Pendina, A. A., Efimova, O. A., Chiryaeva, O. G., Kuznetzova, T. V., & Baranov, V. S. (2019). On the complexity of mechanisms and consequences of chromothripsis: an update. Frontiers in Genetics, 10, 393–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rausch, T., Jones David, T. W., Zapatka, M., Stütz AdrianÂ, M., Zichner, T., Weischenfeldt, J., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148(1), 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Y., Schwab, C., Ryan, S. L., Papaemmanuil, E., Robinson, H. M., Jacobs, P., et al. (2014). Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature, 508(7494), 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Al-Sweedan, S., & Altahan, R. (2019). Implications of intrachromosomal amplification of chromosome 21 on outcome in pediatric acute lymphoblastic leukemia: does it affect our patients too? Hematology Reports, 11(2), 7826–7826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Molenaar, J. J., Koster, J., Zwijnenburg, D. A., van Sluis, P., Valentijn, L. J., van der Ploeg, I., Hamdi, M., van Nes, J., Westerman, B. A., van Arkel, J., Ebus, M. E., Haneveld, F., Lakeman, A., Schild, L., Molenaar, P., Stroeken, P., van Noesel, M., Ora, I., Santo, E. E., Caron, H. N., Westerhout, E. M., & Versteeg, R. (2012). Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature, 483(7391), 589–593.

    Article  CAS  PubMed  Google Scholar 

  60. Morrison, C. D., Liu, P., Woloszynska-Read, A., Zhang, J., Luo, W., Qin, M., et al. (2014). Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proceedings of the National Academy of Sciences, 111(6), E672–E681.

    Article  CAS  Google Scholar 

  61. Gröbner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., Johann, P. D., Balasubramanian, G. P., Segura-Wang, M., Brabetz, S., Bender, S., Hutter, B., Sturm, D., Pfaff, E., Hübschmann, D., Zipprich, G., Heinold, M., Eils, J., Lawerenz, C., Erkek, S., Lambo, S., Waszak, S., Blattmann, C., Borkhardt, A., Kuhlen, M., Eggert, A., Fulda, S., Gessler, M., Wegert, J., Kappler, R., Baumhoer, D., Burdach, S., Kirschner-Schwabe, R., Kontny, U., Kulozik, A. E., Lohmann, D., Hettmer, S., Eckert, C., Bielack, S., Nathrath, M., Niemeyer, C., Richter, G. H., Schulte, J., Siebert, R., Westermann, F., Molenaar, J. J., Vassal, G., Witt, H., ICGC PedBrain-Seq Project, ICGC MMML-Seq Project, Burkhardt, B., Kratz, C. P., Witt, O., van Tilburg, C., Kramm, C. M., Fleischhack, G., Dirksen, U., Rutkowski, S., Frühwald, M., von Hoff, K., Wolf, S., Klingebiel, T., Koscielniak, E., Landgraf, P., Koster, J., Resnick, A. C., Zhang, J., Liu, Y., Zhou, X., Waanders, A. J., Zwijnenburg, D. A., Raman, P., Brors, B., Weber, U. D., Northcott, P. A., Pajtler, K. W., Kool, M., Piro, R. M., Korbel, J. O., Schlesner, M., Eils, R., Jones, D. T. W., Lichter, P., Chavez, L., Zapatka, M., & Pfister, S. M. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327.

    Article  PubMed  CAS  Google Scholar 

  62. Fung, Y. K., Murphree, A. L., T’Ang, A., Qian, J., Hinrichs, S. H., & Benedict, W. F. (1987). Structural evidence for the authenticity of the human retinoblastoma gene. Science, 236(4809), 1657–1661.

    Article  CAS  PubMed  Google Scholar 

  63. de Jong, M. C., Kors, W. A., de Graaf, P., Castelijns, J. A., Kivela, T., & Moll, A. C. (2014). Trilateral retinoblastoma: a systematic review and meta-analysis. The Lancet Oncology, 15(10), 1157–1167.

    Article  PubMed  Google Scholar 

  64. Hisada, M., Garber, J. E., Fung, C. Y., Fraumeni Jr., J. F., & Li, F. P. (1998). Multiple primary cancers in families with Li-Fraumeni syndrome. Journal of the National Cancer Institute, 90(8), 606–611.

    Article  CAS  PubMed  Google Scholar 

  65. Tabori, U., Nanda, S., Druker, H., Lees, J., & Malkin, D. (2007). Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Research, 67(4), 1415–1418.

    Article  CAS  PubMed  Google Scholar 

  66. Saletta, F., Dalla Pozza, L., & Byrne, J. A. (2015). Genetic causes of cancer predisposition in children and adolescents. Translational Pediatrics, 4(2), 67–75.

    PubMed  PubMed Central  Google Scholar 

  67. Alter, B. P. (2003). Cancer in Fanconi anemia, 1927-2001. Cancer, 97(2), 425–440.

    Article  PubMed  Google Scholar 

  68. Kutler, D. I., Auerbach, A. D., Satagopan, J., Giampietro, P. F., Batish, S. D., Huvos, A. G., Goberdhan, A., Shah, J. P., & Singh, B. (2003). High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Archives of Otolaryngology – Head & Neck Surgery, 129(1), 106–112.

    Article  Google Scholar 

  69. Kutler, D. I., Singh, B., Satagopan, J., Batish, S. D., Berwick, M., Giampietro, P. F., Hanenberg, H., & Auerbach, A. D. (2003). A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood, 101(4), 1249–1256.

    Article  CAS  PubMed  Google Scholar 

  70. Jaskiewicz, L., & Filipowicz, W. (2008). Role of Dicer in posttranscriptional RNA silencing. Current Topics in Microbiology and Immunology, 320, 77–97.

    CAS  PubMed  Google Scholar 

  71. Indolfi, P., Casale, F., Carli, M., Bisogno, G., Ninfo, V., Cecchetto, G., Bagnulo, S., Santoro, N., Giuliano, M., & di Tullio, M. T. (2000). Pleuropulmonary blastoma: management and prognosis of 11 cases. Cancer, 89(6), 1396–1401.

    Article  CAS  PubMed  Google Scholar 

  72. Dishop, M. K., & Kuruvilla, S. (2008). Primary and metastatic lung tumors in the pediatric population: a review and 25-year experience at a large children’s hospital. Archives of Pathology & Laboratory Medicine, 132(7), 1079–1103.

    Article  Google Scholar 

  73. Hasle, H. (2001). Pattern of malignant disorders in individuals with Down’s syndrome. The Lancet Oncology, 2(7), 429–436.

    Article  CAS  PubMed  Google Scholar 

  74. Lange, B. (2000). The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. British Journal of Haematology, 110(3), 512–524.

    Article  CAS  PubMed  Google Scholar 

  75. Farmer K, Robin NH, Farmer MB (2018) Chapter 7-cancer syndromes that present in childhood. Pediatric Cancer Genetics. Elsevier, pp 77–92.

  76. Johnson, K. J., Carozza, S. E., Chow, E. J., Fox, E. E., Horel, S., McLaughlin, C. C., Mueller, B. A., Puumala, S. E., Reynolds, P., von Behren, J., & Spector, L. G. (2009). Parental age and risk of childhood cancer: a pooled analysis. Epidemiology, 20(4), 475–483.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dryja, T. P., Morrow, J. F., & Rapaport, J. M. (1997). Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene. Human Genetics, 100(3–4), 446–449.

    Article  CAS  PubMed  Google Scholar 

  78. Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nature Reviews. Genetics, 1(1), 40–47.

    Article  CAS  PubMed  Google Scholar 

  79. Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D. B., VanBuren, V., & Ko, M. S. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Human Molecular Genetics, 13(19), 2263–2278.

    Article  CAS  PubMed  Google Scholar 

  80. Steuerwald, N. M., Bermudez, M. G., Wells, D., Munne, S., & Cohen, J. (2007). Maternal age-related differential global expression profiles observed in human oocytes. Reproductive Biomedicine Online, 14(6), 700–708.

    Article  CAS  PubMed  Google Scholar 

  81. Pan, H., Ma, P., Zhu, W., & Schultz, R. M. (2008). Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Developmental Biology, 316(2), 397–407.

    Article  CAS  PubMed  Google Scholar 

  82. Choong, S. S., Latiff, Z. A., Mohamed, M., Lim, L. L., Chen, K. S., Vengidasan, L., Razali, H., Abdul Rahman, E. J., Ariffin, H., & Malaysian Society of Pediatric Haematology-Oncology. (2012). Childhood adrenocortical carcinoma as a sentinel cancer for detecting families with germline TP53 mutations. Clinical Genetics, 82(6), 564–568.

    Article  CAS  PubMed  Google Scholar 

  83. Banks, K. C., Moline, J. J., Marvin, M. L., Newlin, A. C., & Vogel, K. J. (2013). 10 rare tumors that warrant a genetics referral. Familial Cancer, 12(1), 1–18.

    Article  PubMed  Google Scholar 

  84. Stewart, A., Webb, J., & Hewitt, D. (1958). A survey of childhood malignancies. British Medical Journal, 1(5086), 1495–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., Howe, N. L., Ronckers, C. M., Rajaraman, P., Sir Craft, A. W., Parker, L., & Berrington de González, A. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 380(9840), 499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cardis, E., Krewski, D., Boniol, M., Drozdovitch, V., Darby, S. C., Gilbert, E. S., et al. (2006). Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident. International Journal of Cancer, 119(6), 1224–1235.

    Article  CAS  PubMed  Google Scholar 

  87. Little, M. P., Wakeford, R., & Kendall, G. M. (2009). Updated estimates of the proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation. Journal of Radiological Protection, 29(4), 467–482.

    Article  PubMed  Google Scholar 

  88. Tamura, D., DiGiovanna, J. J., Khan, S. G., & Kraemer, K. H. (2014). Living with xeroderma pigmentosum: comprehensive photoprotection for highly photosensitive patients. Photodermatology, Photoimmunology & Photomedicine, 30(2–3), 146–152.

    Article  CAS  Google Scholar 

  89. Cheng, J., Su, H., Zhu, R., Wang, X., Peng, M., Song, J., et al. (2014). Maternal coffee consumption during pregnancy and risk of childhood acute leukemia: a metaanalysis. American Journal of Obstetrics and Gynecology, 210(2), 151 e151–151 e110.

    Article  CAS  Google Scholar 

  90. Goh, Y. I., Bollano, E., Einarson, T. R., & Koren, G. (2007). Prenatal multivitamin supplementation and rates of pediatric cancers: a meta-analysis. Clinical Pharmacology and Therapeutics, 81(5), 685–691.

    Article  CAS  PubMed  Google Scholar 

  91. Milne, E., Greenop, K. R., Scott, R. J., Bailey, H. D., Attia, J., Dalla-Pozza, L., de Klerk, N. H., & Armstrong, B. K. (2011). Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. American Journal of Epidemiology, 175(1), 43–53.

    Article  PubMed  Google Scholar 

  92. Klimentopoulou, A., Antonopoulos, C. N., Papadopoulou, C., Kanavidis, P., Tourvas, A. D., Polychronopoulou, S., Baka, M., Athanasiadou-Piperopoulou, F., Kalmanti, M., Sidi, V., Moschovi, M., & Petridou, E. T. (2012). Maternal smoking during pregnancy and risk for childhood leukemia: a nationwide case-control study in Greece and meta-analysis. Pediatric Blood & Cancer, 58(3), 344–351.

    Article  Google Scholar 

  93. Latino-Martel, P., Chan, D. S., Druesne-Pecollo, N., Barrandon, E., Hercberg, S., & Norat, T. (2010). Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 19(5), 1238–1260.

    Article  CAS  Google Scholar 

  94. Caughey, R. W., & Michels, K. B. (2009). Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. International Journal of Cancer, 124(11), 2658–2670.

    Article  CAS  PubMed  Google Scholar 

  95. O’Neill, K. A., Bunch, K. J., Vincent, T. J., Spector, L. G., Moorman, A. V., & Murphy, M. F. (2012). Immunophenotype and cytogenetic characteristics in the relationship between birth weight and childhood leukemia. Pediatric Blood & Cancer, 58(1), 7–11.

    Article  Google Scholar 

  96. Dahlhaus A, Prengel P, Spector L, Pieper D (2017) Birth weight and subsequent risk of childhood primary brain tumors: an updated meta-analysis. Pediatric Blood & Cancer 64 (5).

  97. Harder, T., Plagemann, A., & Harder, A. (2010). Birth weight and risk of neuroblastoma: a meta-analysis. International Journal of Epidemiology, 39(3), 746–756.

    Article  PubMed  Google Scholar 

  98. Spector, L. G., Puumala, S. E., Carozza, S. E., Chow, E. J., Fox, E. E., Horel, S., Johnson, K. J., McLaughlin, C., Reynolds, P., Behren, J. V., & Mueller, B. A. (2009). Cancer risk among children with very low birth weights. Pediatrics, 124(1), 96–104.

    Article  PubMed  Google Scholar 

  99. Murphy, M. F., Whiteman, D., Hey, K., Griffith, M., Gill, L., Goldacre, M. J., Vincent, T. J., & Bunch, K. (2001). Childhood cancer incidence in a cohort of twin babies. British Journal of Cancer, 84(11), 1460–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Murphy, M. F., Bunch, K. J., Chen, B., & Hemminki, K. (2008). Reduced occurrence of childhood cancer in twins compared to singletons: protection but by what mechanism? Pediatric Blood & Cancer, 51(1), 62–65.

    Article  CAS  Google Scholar 

  101. Moreno, L., Pearson, A. D. J., Paoletti, X., Jimenez, I., Geoerger, B., Kearns, P. R., Zwaan, C. M., Doz, F., Baruchel, A., Vormoor, J., Casanova, M., Pfister, S. M., Morland, B., Vassal, G., & Innovative Therapies for Children with Cancer (ITCC) Consortium. (2017). Early phase clinical trials of anticancer agents in children and adolescents–an ITCC perspective. Nature Reviews. Clinical Oncology, 14(8), 497–507.

    Article  CAS  PubMed  Google Scholar 

  102. Tannock, I. F., & Hickman, J. A. (2016). Limits to personalized cancer medicine. The New England Journal of Medicine, 375(13), 1289–1294.

    Article  PubMed  Google Scholar 

  103. Burdach, S. E. G., Westhoff, M. A., Steinhauser, M. F., & Debatin, K. M. (2018). Precision medicine in pediatric oncology. Molecular and Cell Pediatrics, 5(1), 6.

    Article  Google Scholar 

  104. Jacobi A, Robinson WJ (1909) Dr. Jacobi’s works: collected essays, addresses, scientific papers and miscellaneous writings of A. Jacobi. Critic and guide Company.

Download references

Acknowledgments

NK, RF, and HS would like to acknowledge the support from the Master Course in Molecular Medicine at Ulm University, on which, during their time as students, the initial idea for this review was conceived. Sara E. Barry kindly read an early version of the manuscript and gave invaluable suggestions. MAW and KMD are, as always, grateful for the administrative support of Bianca Welz and Elke Lützner, as well as the support from the Förderkreis für tumour- und leukämiekranke Kinder Ulm e.V. Vicariously for all the pediatric patients seen in our clinics, the authors would like to dedicate this paper to Kilian Schlabach and his parents. We learn so much more about courage and the human spirit from these families than one could ever have imagined.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike-Andrew Westhoff.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mike-Andrew Westhoff and Klaus-Michael Debatin shared seniority.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattner, P., Strobel, H., Khoshnevis, N. et al. Compare and contrast: pediatric cancer versus adult malignancies. Cancer Metastasis Rev 38, 673–682 (2019). https://doi.org/10.1007/s10555-019-09836-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09836-y

Keywords

Navigation