Skip to main content
Log in

Nanomedicine as an emerging platform for metastatic lung cancer therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO (2015). Fact sheet N°297. http://www.who.int/mediacentre/factsheets/fs297/en/.

  2. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. doi:10.3322/caac.20107.

    Google Scholar 

  3. Qin, X., Xu, H., Gong, W., & Deng, W. (2014). The tumor cytosol miRNAs, fluid miRNAs, and exosome miRNAs in lung cancer. Frontiers Oncology, 4, 357. doi:10.3389/fonc.2014.00357.

    Google Scholar 

  4. Gennatas, S., Noble, J., Stanway, S., Gunapala, R., Chowdhury, R., Wotherspoon, A., et al. (2015). Patterns of relapse in extrapulmonary small cell carcinoma: retrospective analysis of outcomes from two cancer centres. BMJ Open, 5(1), e006440. doi:10.1136/bmjopen-2014-006440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ma, Q., Liu, D., Guo, Y., Shi, B., Song, Z., & Tian, Y. (2010). Surgical therapeutic strategy for non-small cell lung cancer with mediastinal lymph node metastasis (N2). Zhongguo Fei Ai Za Zhi, 13(4), 342–348. doi:10.3779/j.issn.1009-3419.2010.04.14.

    PubMed  Google Scholar 

  6. Yano, T., Okamoto, T., Fukuyama, S., & Maehara, Y. (2014). Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World Journal of Clinical Oncology, 5(5), 1048–1054. doi:10.5306/wjco.v5.i5.1048.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Carnio, S., Novello, S., Mele, T., Levra, M. G., & Scagliotti, G. V. (2014). Extending survival of stage IV non-small cell lung cancer. Seminars in Oncology, 41(1), 69–92. doi:10.1053/j.seminoncol.2013.12.013.

    Article  CAS  PubMed  Google Scholar 

  8. Luo, Y., Li, D., Ran, J., Yan, B., Chen, J., Dong, X., et al. (2014). End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability. Protein & Cell, 5(6), 469–479. doi:10.1007/s13238-014-0053-0.

    Article  CAS  Google Scholar 

  9. Prieto Garcia, A., & Pineda de la Losa, F. (2010). Immunoglobulin E-mediated severe anaphylaxis to paclitaxel. Journal of Investigational Allergology and Clinical Immunology, 20(2), 170–171.

    CAS  PubMed  Google Scholar 

  10. Wang, Y., Wu, K. C., Zhao, B. X., Zhao, X., Wang, X., Chen, S., et al. (2011). A novel paclitaxel microemulsion containing a reduced amount of Cremophor EL: pharmacokinetics, biodistribution, and in vivo antitumor efficacy and safety. Journal of Biomedicine and Biotechnology, 2011, 854872. doi:10.1155/2011/854872.

  11. Herman, E. H., el-Hage, A. N., Ferrans, V. J., & Ardalan, B. (1985). Comparison of the severity of the chronic cardiotoxicity produced by doxorubicin in normotensive and hypertensive rats. Toxicology and Applied Pharmacology, 78(2), 202–214.

    Article  CAS  PubMed  Google Scholar 

  12. Federico, C., Morittu, V. M., Britti, D., Trapasso, E., & Cosco, D. (2012). Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. International Journal of Nanomedicine, 7, 5423–5436. doi:10.2147/IJN.S34025.

    PubMed Central  PubMed  Google Scholar 

  13. Zuco, V., Cassinelli, G., Cossa, G., Gatti, L., Favini, E., Tortoreto, M., et al. (2015). Targeting the invasive phenotype of cisplatin-resistant non-small cell lung cancer cells by a novel histone deacetylase inhibitor. Biochemical Pharmacology, 94(2), 79–90. doi:10.1016/j.bcp.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  14. Liang, X. J., Chen, C., Zhao, Y., & Wang, P. C. (2010). Circumventing tumor resistance to chemotherapy by nanotechnology. Methods in Molecular Biology, 596, 467–488. doi:10.1007/978-1-60761-416-6_21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Peer, D. (2012). Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Advanced Drug Delivery Reviews, 64(15), 1738–1748. doi:10.1016/j.addr.2012.06.013.

    Article  CAS  PubMed  Google Scholar 

  16. Goldsmith, M., Mizrahy, S., & Peer, D. (2011). Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (London, England), 6(10), 1771–1785. doi:10.2217/nnm.11.162.

    Article  CAS  Google Scholar 

  17. Belliveau, N. M., Huft, J., Lin, P. J., Chen, S., Leung, A. K., Leaver, T. J., et al. (2012). Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy Nucleic Acids, 1, e37. doi:10.1038/mtna.2012.28.

  18. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. doi:10.1038/nnano.2007.387.

    Article  CAS  PubMed  Google Scholar 

  19. Landesman-Milo, D., & Peer, D. (2012). Altering the immune response with lipid-based nanoparticles. Journal of Controlled Release, 161(2), 600–608. doi:10.1016/j.jconrel.2011.12.034.

    Article  CAS  PubMed  Google Scholar 

  20. Koshkina, N. V., Waldrep, J. C., Roberts, L. E., Golunski, E., Melton, S., & Knight, V. (2001). Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clinical Cancer Research, 7(10), 3258–3262.

    CAS  PubMed  Google Scholar 

  21. Mei, L., Liu, Y., Zhang, Q., Gao, H., Zhang, Z., & He, Q. (2014). Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. Journal of Controlled Release, 196, 324–331. doi:10.1016/j.jconrel.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  22. Jinushi, M. (2014). Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses. Cancer Metastasis Reviews, 33(2–3), 737–745. doi:10.1007/s10555-014-9501-9.

    Article  CAS  PubMed  Google Scholar 

  23. Liang, Y., Meleady, P., Cleary, I., McDonnell, S., Connolly, L., & Clynes, M. (2001). Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance, integrin expression and in vitro invasiveness. European Journal of Cancer, 37(8), 1041–1052.

  24. Lawson, K. A., Anderson, K., Menchaca, M., Atkinson, J., Sun, L., Knight, V., et al. (2003). Novel vitamin E analogue decreases syngeneic mouse mammary tumor burden and reduces lung metastasis. Molecular Cancer Therapeutics, 2(5), 437–444.

    CAS  PubMed  Google Scholar 

  25. Latimer, P., Menchaca, M., Snyder, R. M., Yu, W., Gilbert, B. E., Sanders, B. G., et al. (2009). Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Experimental Biology and Medicine (Maywood, N.J.), 234(10), 1244–1252. doi:10.3181/0901-RM-8.

    Article  CAS  Google Scholar 

  26. Barenholz, Y. (2012). Doxil(R)—the first FDA-approved nano-drug: lessons learned. Journal of Controlled Release, 160(2), 117–134. doi:10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  27. Guan, Y. Y., Luan, X., Xu, J. R., Liu, Y. R., Lu, Q., Wang, C., et al. (2014). Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials, 35(9), 3060–3070. doi:10.1016/j.biomaterials.2013.12.027.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, X., Yang, C., Zhang, Y., Zhen, X., Wu, W., & Jiang, X. (2014). Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials, 35(24), 6439–6453. doi:10.1016/j.biomaterials.2014.04.016.

    Article  CAS  PubMed  Google Scholar 

  29. Ye, S., Yang, W., Wang, Y., Ou, W., Ma, Q., Yu, C., et al. (2013). Cationic liposome-mediated nitric oxide synthase gene therapy enhances the antitumor effects of cisplatin in lung cancer. International Journal of Molecular Medicine, 31(1), 33–42. doi:10.3892/ijmm.2012.1171.

    CAS  PubMed  Google Scholar 

  30. Zhang, C. F., Xiang, L. H., Shen, J., Zhang, Y., Li, J., & Zheng, Z. Z. (2009). Expression of pigment epithelium-derived factor in human melanocytes and malignant melanoma cells and tissues: is loss of pigment epithelium-derived factor associated with melanoma? Dermatoendocrinol, 1(2), 108–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shi, H. S., Yang, L. P., Wei, W., Su, X. Q., Li, X. P., Li, M., et al. (2013). Systemically administered liposome-encapsulated Ad-PEDF potentiates the anti-cancer effects in mouse lung metastasis melanoma. Journal of Translational Medicine, 11, 86. doi:10.1186/1479-5876-11-86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Heller, A. (2008). Apoptosis-inducing high (.)NO concentrations are not sustained either in nascent or in developed cancers. ChemMedChem, 3(10), 1493–1499. doi:10.1002/cmdc.200800257.

    Article  CAS  PubMed  Google Scholar 

  33. de Jesus, M. B., & Zuhorn, I. S. (2015). Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. [review]. Journal of Controlled Release, 201C, 1–13. doi:10.1016/j.jconrel.2015.01.010.

    Article  Google Scholar 

  34. Shete, H. K., Prabhu, R. H., & Patravale, V. B. (2014). Endosomal escape: a bottleneck in intracellular delivery. [Research Support, Non-U.S. Gov't Review]. Journal of Nanoscience and Nanotechnology, 14(1), 460–474.

    Article  CAS  PubMed  Google Scholar 

  35. Kedmi, R., Ben-Arie, N., & Peer, D. (2010). The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 31(26), 6867–6875. doi:10.1016/j.biomaterials.2010.05.027.

    Article  CAS  PubMed  Google Scholar 

  36. Landesman-Milo, D., & Peer, D. (2014). Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Delivery Translational Research, 4(1), 96–103. doi:10.1007/s13346-013-0158-7.

    Article  CAS  PubMed  Google Scholar 

  37. Peer, D., & Howard, K. A. (2014). RNA interference-based therapeutics and diagnostics. Drug Delivery Translational Research, 4(1), 1–2. doi:10.1007/s13346-013-0182-7.

    Article  PubMed  Google Scholar 

  38. Jayaraman, M., Ansell, S. M., Mui, B. L., Tam, Y. K., Chen, J., Du, X., et al. (2012). Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie (International Ed. in English), 51(34), 8529–8533. doi:10.1002/anie.201203263.

  39. Cohen, Z. R., Ramishetti, S., Peshes-Yaloz, N., Goldsmith, M., Wohl, A., Zibly, Z., et al. (2015). Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano, 9(2), 1581–1591. doi:10.1021/nn506248s.

    Article  CAS  PubMed  Google Scholar 

  40. Daka, A., & Peer, D. (2012). RNAi-based nanomedicines for targeted personalized therapy. Advanced Drug Delivery Reviews, 64(13), 1508–1521. doi:10.1016/j.addr.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  41. Peer, D., & Lieberman, J. (2011). Special delivery: targeted therapy with small RNAs. Gene Therapy, 18(12), 1127–1133. doi:10.1038/gt.2011.56.

    Article  CAS  PubMed  Google Scholar 

  42. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498. doi:10.1038/35078107.

    Article  CAS  PubMed  Google Scholar 

  43. Hattori, Y., Nakamura, A., Arai, S., Kawano, K., Maitani, Y., & Yonemochi, E. (2014). siRNA delivery to lung-metastasized tumor by systemic injection with cationic liposomes. Journal of Liposome Research, 1–8, doi:10.3109/08982104.2014.992024.

  44. Kusumoto, K., Akita, H., Ishitsuka, T., Matsumoto, Y., Nomoto, T., Furukawa, R., et al. (2013). Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano, 7(9), 7534–7541. doi:10.1021/nn401317t.

    Article  CAS  PubMed  Google Scholar 

  45. Li, S. D., Chono, S., & Huang, L. (2008). Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. Journal of Controlled Release, 126(1), 77–84. doi:10.1016/j.jconrel.2007.11.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang, Y., Xu, Z., Guo, S., Zhang, L., Sharma, A., Robertson, G. P., et al. (2013). Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Molecular Therapy, 21(10), 1919–1929. doi:10.1038/mt.2013.135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Maksimenko, A., Dosio, F., Mougin, J., Ferrero, A., Wack, S., Reddy, L. H., et al. (2014). A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proceedings of the National Academy of Sciences of the United States of America, 111(2), E217–E226. doi:10.1073/pnas.1313459110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kobayashi, H., Watanabe, R., & Choyke, P. L. (2013). Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 4(1), 81–89. doi:10.7150/thno.7193.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bogart, L. K., Pourroy, G., Murphy, C. J., Puntes, V., Pellegrino, T., Rosenblum, D., et al. (2014). Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano, 8(4), 3107–3122. doi:10.1021/nn500962q.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Elbayoumi, T. A., & Torchilin, V. P. (2009). Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Molecular Pharmaceutics, 6(1), 246–254. doi:10.1021/mp8001528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Drinberg, V., Bitcover, R., Rajchenbach, W., & Peer, D. (2014). Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Letters, 354(2), 290–298. doi:10.1016/j.canlet.2014.08.026.

    Article  CAS  PubMed  Google Scholar 

  52. Ganoth, A., Merimi, K. C., & Peer, D. (2015). Overcoming multidrug resistance with nanomedicines. Expert Opinion on Drug Delivery, 12(2), 223–238. doi:10.1517/17425247.2015.960920.

    Article  CAS  PubMed  Google Scholar 

  53. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688–701. doi:10.1038/nrc1958.

    Article  CAS  PubMed  Google Scholar 

  54. Duncan, R. (2014). Polymer therapeutics: top 10 selling pharmaceuticals—what next? Journal of Controlled Release, 190, 371–380. doi:10.1016/j.jconrel.2014.05.001.

    Article  CAS  PubMed  Google Scholar 

  55. Markovsky, E., Baabur-Cohen, H., & Satchi-Fainaro, R. (2014). Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. Journal of Controlled Release, 187, 145–157. doi:10.1016/j.jconrel.2014.05.025.

    Article  CAS  PubMed  Google Scholar 

  56. Maeda, H., Bharate, G. Y., & Daruwalla, J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 409–419. doi:10.1016/j.ejpb.2008.11.010.

    Article  CAS  PubMed  Google Scholar 

  57. Seymour, L. W., Ferry, D. R., Kerr, D. J., Rea, D., Whitlock, M., Poyner, R., et al. (2009). Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. International Journal of Oncology, 34(6), 1629–1636.

    Article  CAS  PubMed  Google Scholar 

  58. Chipman, S. D., Oldham, F. B., Pezzoni, G., & Singer, J. W. (2006). Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. International Journal of Nanomedicine, 1(4), 375–383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Patel, L. N., Zaro, J. L., & Shen, W. C. (2007). Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 24(11), 1977–1992. doi:10.1007/s11095-007-9303-7.

    Article  CAS  PubMed  Google Scholar 

  60. Lindgren, M., Hallbrink, M., Prochiantz, A., & Langel, U. (2000). Cell-penetrating peptides. Trends in Pharmacological Sciences, 21(3), 99–103.

    Article  CAS  PubMed  Google Scholar 

  61. Fujii, H., Nishikawa, N., Komazawa, H., Orikasa, A., Ono, M., Itoh, I., et al. (1996). Inhibition of tumor invasion and metastasis by peptidic mimetics of Arg-Gly Asp (RGD) derived from the cell recognition site of fibronectin. Oncology Research, 8(9), 333–342.

    CAS  PubMed  Google Scholar 

  62. Shamay, Y., Shpirt, L., Ashkenasy, G., & David, A. (2014). Complexation of cell-penetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharmaceutical Research, 31(3), 768–779. doi:10.1007/s11095-013-1198-x.

    Article  CAS  PubMed  Google Scholar 

  63. Li, R., Wu, W., Liu, Q., Wu, P., Xie, L., Zhu, Z., et al. (2013). Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS ONE, 8(7), e69643. doi:10.1371/journal.pone.0069643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Reticker-Flynn, N. E., & Bhatia, S. N. (2015). Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discovery, 5(2), 168–181. doi:10.1158/2159-8290.CD-13-0760.

    Article  CAS  PubMed  Google Scholar 

  65. Newton-Northup, J. R., Dickerson, M. T., Ma, L., Besch-Williford, C. L., & Deutscher, S. L. (2013). Inhibition of metastatic tumor formation in vivo by a bacteriophage display-derived galectin-3 targeting peptide. Clinical and Experimental Metastasis, 30(2), 119–132. doi:10.1007/s10585-012-9516-y.

  66. Caine, G. J., Stonelake, P. S., Lip, G. Y., & Kehoe, S. T. (2002). The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia, 4(6), 465–473. doi:10.1038/sj.neo.7900263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhao, Y., Zhang, T., Duan, S., Davies, N. M., & Forrest, M. L. (2014). CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine (London, England), 10(6), 1221–1230. doi:10.1016/j.nano.2014.02.015.

    CAS  Google Scholar 

  68. Peer, D. (2013). A daunting task: manipulating leukocyte function with RNAi. Immunology Reviews, 253(1), 185–197. doi:10.1111/imr.12044.

    Article  Google Scholar 

  69. Mizrahy, S., Goldsmith, M., Leviatan-Ben-Arye, S., Kisin-Finfer, E., Redy, O., Srinivasan, S., et al. (2014). Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles. Nanoscale, 6(7), 3742–3752. doi:10.1039/c3nr06102g.

    Article  CAS  PubMed  Google Scholar 

  70. Mizrahy, S., & Peer, D. (2012). Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 41(7), 2623–2640. doi:10.1039/c1cs15239d.

    Article  CAS  PubMed  Google Scholar 

  71. Peer, D., & Margalit, R. (2004). Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. International Journal of Cancer, 108(5), 780–789. doi:10.1002/ijc.11615.

    Article  CAS  Google Scholar 

  72. Bonnet, M. E., Gossart, J. B., Benoit, E., Messmer, M., Zounib, O., Moreau, V., et al. (2013). Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition. Journal of Controlled Release, 170(2), 183–190. doi:10.1016/j.jconrel.2013.05.015.

    Article  CAS  PubMed  Google Scholar 

  73. Shen, J., Sun, H., Xu, P., Yin, Q., Zhang, Z., Wang, S., et al. (2013). Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials, 34(5), 1581–1590. doi:10.1016/j.biomaterials.2012.10.057.

    Article  CAS  PubMed  Google Scholar 

  74. Rajeev, K. G., Nair, J. K., Jayaraman, M., Charisse, K., Taneja, N., O'Shea, J., et al. (2015). Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem. doi:10.1002/cbic.201500023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Peer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landesman-Milo, D., Ramishetti, S. & Peer, D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 34, 291–301 (2015). https://doi.org/10.1007/s10555-015-9554-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9554-4

Keywords

Navigation