Skip to main content
Log in

Evaluation the relationship between myocardial fibrosis and left ventricular torsion measured by cardiac magnetic resonance feature-tracking in hypertrophic cardiomyopathy patients with preserved ejection fraction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The relationship between left ventricular (LV) torsion and myocardial fibrosis (MF) in hypertrophic cardiomyopathy (HCM) patients with preserved ejection fraction was still not well understood. New developments in cardiac magnetic resonance (CMR) enable a much fuller assessment of cardiac characteristics. This study sought to assess the impact of HCM on myocardial function as assessed by LV torsion and its relationship with MF. HCM (n = 79) and healthy controls (n = 40) underwent CMR. According to whether there was late gadolinium enhancement (LGE), patients were divided into LGE+ group and LGE group. LV torsion and torsion rate were measured by CMR feature-tracking (CMR-FT). MF was quantitatively evaluated through LGE imaging. LGE was present in 44 patients (56%). Compared with healthy controls, torsion increased in the LGE group (P < 0.001). Compared with LGE+ group, torsion was higher in the LGE group (P < 0.001). There was no significant difference in torsion between LGE+ group and healthy controls. Correlation analysis showed that torsion was correlated with LGE% (= − 0.443) and LGE mass (= − 0.435) respectively. On multivariable logistic regression analysis, LV torsion was the only feature that was independently associated with the presence of LGE (OR 0.130; 95% CI 0.040 to 0.420, P = 0.01). The best torsion value associated with MF was 1.91 (sensitivity 60.0%, specificity 77.3%, AUC = 0.733). In HCM patients with preserved ejection fraction, CMR-FT derived LV torsion analysis holds promise for myocardial fibrosis detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS et al (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice guidelines. Circulation 124:2761–2796. https://doi.org/10.1161/CIR.0b013e318223e230

    Article  PubMed  Google Scholar 

  2. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE et al (2003) A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J 24:1965–1991. https://doi.org/10.1016/s0195-668x(03)00479-2

    Article  PubMed  Google Scholar 

  3. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874. https://doi.org/10.1016/j.jacc.2010.05.010

    Article  PubMed  Google Scholar 

  4. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495. https://doi.org/10.1161/CIRCULATIONAHA

    Article  PubMed  Google Scholar 

  5. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887. https://doi.org/10.1016/j.jacc.2010.05.007

    Article  PubMed  Google Scholar 

  6. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y et al (2016) Prognostic Value of LGE-CMR in HCM: a Meta-analysis. JACC Cardiovasc Imaging 9:1392–1402. https://doi.org/10.1016/j.jcmg.2016.02.031

    Article  PubMed  Google Scholar 

  7. Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72:857–870. https://doi.org/10.1016/j.jacc.2018.05.060

    Article  PubMed  Google Scholar 

  8. Galati G, Leone O, Pasquale F, Olivotto I, Biagini E, Grigioni F et al (2016) Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail 9:e003090. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003090

    Article  PubMed  Google Scholar 

  9. Moon JC, Sheppard M, Reed E, Lee P, Elliott PM, Pennell DJ et al (2006) The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reason 8:479–482. https://doi.org/10.1080/10976640600605002

    Article  Google Scholar 

  10. Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A et al (2013) Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging 6:587–596. https://doi.org/10.1016/j.jcmg.2012.09.018

    Article  PubMed  Google Scholar 

  11. Kuo PH (2008) Gadolinium-containing MRI contrast agents: important variations on a theme for NSF. J Am Coll Radiol 5:29–35. https://doi.org/10.1016/j.jacr.2007.08.014

    Article  PubMed  Google Scholar 

  12. Thomsen HS (2007) ESUR guideline: gadolinium-based contrast media and nephrogenic systemic fibrosis. Eur Radiol 17:2692–2696. https://doi.org/10.1007/s00330-007-0744-5

    Article  PubMed  Google Scholar 

  13. Arts T, Reneman RS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7:299–318. https://doi.org/10.1007/BF02364118

    Article  CAS  PubMed  Google Scholar 

  14. Young AA, Cowan BR (2012) Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:49. https://doi.org/10.1186/1532-429X-14-49

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ashwal AJ, Mugula SR, Samanth J, Paramasivam G, Nayak K, Padmakumar R et al (2020) Role of deformation imaging in left ventricular non-compaction and hypertrophic cardiomyopathy: an Indian perspective. Egypt Heart J 72:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu S, Li Y, Zhao Y, Wang X, Wu Z, Gu X et al (2022) The combination of feature Tracking and Late Gadolinium Enhancement for Identification between Hypertrophic Cardiomyopathy and Hypertensive Heart Disease. Front Cardiovasc Med 9:865615. https://doi.org/10.3389/fcvm.2022.865615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shetty R, Samanth J, Nayak K, Sarang A, Thakkar A et al (2014) Evaluation of subtle left ventricular systolic abnormalities in adult patients with hypertrophic cardiomyopathy. J Clin Diagn Res 8:MC05–9. https://doi.org/10.7860/JCDR/2014/10185.5287

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rüssel IK, Brouwer WP, Germans T, Knaapen P, Marcus JT, van der Velden J et al (2011) Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J Cardiovasc Magn Reson 13:3. https://doi.org/10.1186/1532-429X-13-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  Google Scholar 

  20. Ochs A, Riffel J, Ochs MM, Arenja N, Fritz T, Galuschky C et al (2021) Myocardial mechanics in dilated cardiomyopathy: prognostic value of left ventricular torsion and strain. J Cardiovasc Magn Reson 23:136. https://doi.org/10.1186/s12968-021-00829-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kowallick JT, Lamata P, Hussain ST, Kutty S, Steinmetz M, Sohns JM et al (2014) Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking. PLoS ONE 9:e109164. https://doi.org/10.1371/journal.pone.0109164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance – 2020 update: Society for Cardiovascular magnetic resonance (SCMR): Board of Trustees Task Force on standardized post-processing. J Cardiovasc Magn Reason 22:19. https://doi.org/10.1186/s12968-020-00610-6

    Article  Google Scholar 

  23. Sengupta PP, Narula J (2008) Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail Clin 4:379–382. https://doi.org/10.1016/j.hfc.2008.03.013

    Article  PubMed  Google Scholar 

  24. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E et al (2016) Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:613–621. https://doi.org/10.1093/ehjci/jew005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sengupta PP, Tajik AJ, Chandrasekaran K et al (2008) Khandheria BK Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imag 1:366–76. https://doi.org/10.1016/j.jcmg.2008.02.006

    Article  Google Scholar 

  26. Schwartzkopff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J Am Coll Cardiol 31:1089–1096. https://doi.org/10.1016/s0735-1097(98)00036-9

    Article  CAS  PubMed  Google Scholar 

  27. Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE et al (2009) The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 54:866–875. https://doi.org/10.1016/j.jacc.2009.04.072

    Article  PubMed  Google Scholar 

  28. Chang SA, Kim HK, Kim DH, Kim JC, Kim YJ, Kim HC et al (2010) Left ventricular twist mechanics in patients with apical hypertrophic cardiomyopathy: assessment with 2D speckle tracking echocardiography. Heart 96:49–55. https://doi.org/10.1136/hrt.2009.166629

    Article  PubMed  Google Scholar 

  29. Biederman RW, Doyle M, Yamrozik J, Williams RB, Rathi VK, Vido D et al (2005) Physiologic compensation is supranormal in compensated aortic stenosis: does it return to normal after aortic valve replacement or is it blunted by coexistent coronary artery disease? An intramyocardial magnetic resonance imaging study. Circulation 112:I429–I436. https://doi.org/10.1161/CIRCULATIONAHA.104.525501

    Article  PubMed  Google Scholar 

  30. Nagel E, Stuber M, Burkhard B, Fischer SE, Scheidegger MB, Boesiger P et al (2000) Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J 21:582–589. https://doi.org/10.1053/euhj.1999.1736

    Article  CAS  PubMed  Google Scholar 

  31. Kowallick JT, Morton G, Lamata P, Jogiya R, Kutty S, Lotz J et al (2016) Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking. J Magn Reson Imaging 43:128–137. https://doi.org/10.1002/jmri.24979

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the Natural Science Foundation of Liaoning Province (2022-BS-143), the Natural Science Foundation of Shenyang City (22-321-33-31), the National Natural Science Foundation of China (U1908211).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.Z., C.L., and G.W.; methodology, Y.Y., G.F.; validation, Y.D.; formal analysis, Y.B.; writing—original draft preparation, Y.Z., C.L., Y.Y.; writing—review and editing, G.W., G.F.; supervision, X.W.; Funding, G.W., X.D. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guoguang Fan or Guan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the Ethics of Committees of The First Hospital of China Medical University and conformed to the Declaration of Helsinki on human research. All patients included gave their informed consent in order to be included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Li, C., Yu, Y. et al. Evaluation the relationship between myocardial fibrosis and left ventricular torsion measured by cardiac magnetic resonance feature-tracking in hypertrophic cardiomyopathy patients with preserved ejection fraction. Int J Cardiovasc Imaging 40, 921–930 (2024). https://doi.org/10.1007/s10554-024-03061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-024-03061-7

Keywords

Navigation