Skip to main content
Log in

Peak apical recoil rate is a simplified index of left ventricular untwist: validation and application for assessment of diastolic function in children

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The use of untwisting rate as a novel index of LV diastolic function in clinical practice has been limited due to its tedious and time-consuming analysis. Therefore, we simplify the untwist measurement by only measuring the LV apex's recoil rate and validating and applying peak apical recoil rate (PARR) as an index of diastolic dysfunction (DD) in pediatric subjects during increased and decreased lusitropic states. We recruited 153 healthy subjects (mean age 13.8 ± 2.9 years), of whom 48 performed straight leg raising exercise and an additional 46 patients (mean 8.4 ± 5.6 years) with documented pulmonary capillary wedge pressures (PCWP) (validation cohort). In addition, we studied 16 dilated cardiomyopathy patients (mean age 9.5 ± 6.3 years) (application cohort). PARR and isovolumic relaxation time (IVRT) were compared to PCWP. Both PARR and PARR normalized by heart rate (nPARR) were excellent in detecting patients with PCWP ≥ 12 mmHg and greatly superior to IVRT in this respect (AUC: 0.98, 95% CI [0.96, 1.0] vs. AUC: 0.7 95%CI [0.54,0.86]). In DCM patients, PARR and nPARR were greatly decreased compared to controls (− 38.6 ± 18.6º/s vs − 63.1 ± 16.3º /s, p < 0.001) and (− 0.43 ± 0.20 º/ s/min vs − 0.83 ± 0.28º/s/min, p < 0.0001) but increased with straight leg raising exercise (− 59.4 ± 19.4º/s vs − 97.8 ± 39.0 º/s, p < 0.01) and − 0.85 ± 0.36 vs − 1.4 ± 0.62 º/s/min (p < 0.0001) respectively. PARR and nPARR successfully detected increased and decreased lusitropic states and superior to IVRT in correlation with PCWP. This highly reproducible parameter offers incremental value over traditional indices of DD and may potentially serve as a useful index of elevated PCWP in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PARR:

Peak Apical recoil rate

nPARR:

Normalized Peak Apical rate with heart rate

PARo:

Peak apical rotation

DD:

Diastolic Dysfunction

IVRT:

Isovolumic relaxation time

LV:

Left Ventricle

PCWP:

Pulmonary capillary wedge pressure

References

  1. Dragulescu A, Mertens L, Friedberg MK (2013) Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography problems and limitations. Circ Cardiovasc Imaging 6(2):254–261. https://doi.org/10.1161/CIRCIMAGING.112.000175

    Article  PubMed  Google Scholar 

  2. Nagueh SF, Smiseth OA, Appleton CP, Dokainish H, Edvardsen T, Flachskampf FA et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 4:277–314. https://doi.org/10.1093/ehjci/jew082

    Article  Google Scholar 

  3. Little WC, Jae KOh (2009) Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.109.869602

    Article  PubMed  Google Scholar 

  4. Burns AT, La Gerche A, Al M, Prior DL (2009) Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc Imaging 2(6):709–716. https://doi.org/10.1016/j.jcmg.2009.01.015

    Article  PubMed  Google Scholar 

  5. Fukuda N, Terui T, Ishiwata S, Kurihara S (2010) Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle. J Mol Cell Cardiol 48(5):876–881. https://doi.org/10.1016/j.yjmcc.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Di Maria MV, Caracciolo G, Prashker S, Sengupta pp. Banerjee A, (2014) Left Ventricular Rotational Mechanics before and after exercise in Children. J Am Soc Echocardiogr 27(12):1336–1343. https://doi.org/10.1016/j.echo.2014.07.016

    Article  PubMed  Google Scholar 

  7. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550. https://doi.org/10.1093/eurheartj/ehm037

    Article  PubMed  Google Scholar 

  8. Cheng CP, Igarashi Y, Little WC (1992) Mechanism of augmented rate of left ventricular filling during exercise. Circ Res 70(1):9–19. https://doi.org/10.1161/01.RES.70.1.9

    Article  CAS  PubMed  Google Scholar 

  9. Opdahl A, Helle-Valle T, Remme EW, Vartdal T, Pettersen E, Lunde K et al (2008) Apical rotation by speckle tracking echocardiography: a simplified bedside index of left ventricular twist. J Am Soc Echocardiogr 21(10):1121–1128. https://doi.org/10.1016/j.echo.2008.06.012

    Article  PubMed  Google Scholar 

  10. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, Lee MM, Park YB, Choi YS, Seo JD et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480. https://doi.org/10.1016/s0735-1097(97)88335-0

    Article  CAS  PubMed  Google Scholar 

  11. Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.2001.281.5.H2002

    Article  PubMed  Google Scholar 

  12. Thomas JD, Flachskampf FA, Chen C, Guererro JL, Picard MH, Levine RA, Weyman AE (1992) Isovolumic relaxation time varies predictably with its time constant and aortic and left atrial pressures: implications for the noninvasive evaluation of ventricular relaxation. Am Heart J 124(5):1305–1313. https://doi.org/10.1016/0002-8703(92)90416-S

    Article  CAS  PubMed  Google Scholar 

  13. Appleton CP, Galloway JM, Gonzalez MS, Gaballa M, Basnight MA (1993) Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol 22(7):1972-82. https://doi.org/10.1016/0735-1097(93)90787-2

  14. Arsos G, Moralidis E, Karatzas N, Iakovou I, Georga S, Koliouskas D et al (2002) Heart rate is the major determinant of diastolic filling pattern during growth: a radionuclide ventriculography assessment. Pediatr Cardiol 23(4):378–387. https://doi.org/10.1007/s00246-002-1506-4

    Article  CAS  PubMed  Google Scholar 

  15. Schmitz L, Schneider MBE, Lange PE (2003) Isovolumic relaxation time corrected for heart rate has a constant value from infancy to adolescence. J Am Soc Echocardiogr 16(3):221–222. https://doi.org/10.1067/mje.2003.17

    Article  PubMed  Google Scholar 

  16. Punske BB, Taccardi B, Steadman B et al (2005) Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. J Electrocardiol 38:40–44

    Article  PubMed  Google Scholar 

  17. Fuchs E, Muller MF, Oswald H, Thony H, Mohacsi P, Hess OM (2004) Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail 6:715–722

    Article  PubMed  Google Scholar 

  18. Cheng CP, Freeman GL, Santamore WP, Constantinescu MS, Little WC (1990) Effect of loading conditions, contractile state, and heart rate on early diastolic left ventricular filling in conscious dogs. Circ Res 66(3):814–823. https://doi.org/10.1161/01.RES.66.3.814

    Article  CAS  PubMed  Google Scholar 

  19. Notomi Y, Martin-Miklovic MG, Oryszak SJ, Shiota T, Deserranno D, Popovic ZB et al (2006) Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation 113(21):2524–2533. https://doi.org/10.1161/CIRCULATIONAHA.105.596502

    Article  PubMed  Google Scholar 

  20. Cheng CP, Noda T, Nozawa T, Little WC (1993) Effect of heart failure on the mechanism of exercise-induced augmentation of mitral valve flow. Circ Res 72(4):795–806. https://doi.org/10.1161/01.RES.72.4.795

    Article  CAS  PubMed  Google Scholar 

  21. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H (2016) Diagnostic accuracy of tissue doppler index E/e’ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta-analysis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002530

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lancellotti P, Galderisi M, Edvardsen T, Donal E, Goliasch G, Cardim N et al (2017) EchoDoppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study. Eur Heart J Cardiovasc Imaging 18(9):961–968. https://doi.org/10.1093/ehjci/jex067

    Article  PubMed  Google Scholar 

  23. Fogel MA, Sundareswaran KS, de Zelicourt D, Dasi LP, Pawlowski T, Rome J, Yoganathan AP (2012) Power loss and right ventricular efficiency in patients after tetralogy of Fallot repair with pulmonary insufficiency: clinical implications. J Thorac Cardiovasc Surg 143(6):1279–1285. https://doi.org/10.1016/j.jtcvs.2011.10.066

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Putri Yubbu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest and no financial disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yubbu. P: Peak apical recoil rate as an index for diastolic dysfunction.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yubbu, P., Kauffman, H., Calderon-Anyosa, R. et al. Peak apical recoil rate is a simplified index of left ventricular untwist: validation and application for assessment of diastolic function in children. Int J Cardiovasc Imaging 38, 1505–1516 (2022). https://doi.org/10.1007/s10554-022-02587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02587-y

Keywords

Navigation