Skip to main content

Advertisement

Log in

Pressure–Strain Loops, a Novel Non-invasive Approach for Assessment of Children with Cardiomyopathy

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Non-invasive myocardial work (MW) by left ventricular (LV) pressure–strain loops (PSL) is a novel method for assessing myocardial function while adjusting for afterload, yet pediatric data remain lacking. The aims of this study were to investigate the different patterns of LV PSL and non-invasive MW in pediatric patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM) and their association with exercise tolerance. We included 110 pediatric subjects (mean age, 13 ± 4 years, 35 DCM, 40 HCM, and 35 healthy controls). Standard and speckle-tracking echocardiography were performed. LV PSLs were generated, and global work index (GWI), MW efficiency (GWE), constructive work (GCW), and wasted work (GWW) were compared between groups. Regression analysis was used to assess the influence of ventricular function, dimensions, wall thickness, and wall stress on MW and to predict the association between MW and VO2 max as a surrogate of exercise capacity. Patients with DCM had significantly lower GWI compared to controls (GWI 479.6 ± 263.0 vs 1610.1 ± 211.0, P < 0.005). GWE was significantly reduced in DCM (79.3 ± 7.9 vs 95.2 ± 1.3, P < 0.005) due to significantly reduced GCW and increased GWW. HCM patients had significant reduction in GWI and GWE from normal (1237.7 ± 449.1 vs 1610.1 ± 211.0, P = 0.001 and 89.6 ± 4.9 vs 95.2 ± 1.3, P < 0.005, respectively), although less severe than with DCM. In a multivariate regression analysis, GWE had the highest association with VO2 max in both cohorts (DCM: β = 0.68, P = 0.001, HCM: β = 0.71, P = 0.007). Non-invasively assessed myocardial work and LV PSLs provide novel insights into the mechanisms of dysfunction in pediatric patients with cardiomyopathy with good prediction of clinical status and thus hold promise to further explore myocardial mechanistic with clinical relevance in different disease entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Body surface area

CPET:

Cardiopulmonary exercise test

DCM:

Dilated cardiomyopathy

EDV:

End-diastolic volume

EF:

Ejection fraction

ESL:

Early systolic lengthening

ESWS:

End-systolic wall stress

FS:

Fraction shortening

GCW:

Global constructive work

GLS:

Global longitudinal strain

GWE:

Global work efficiency

GWI:

Global work index

GWW:

Global wasted work

HCM:

Hypertrophic cardiomyopathy

ICC:

Intra-class correlation coefficient

IVSD:

End-diastolic septal wall thickness

IVSs:

End-systolic septal wall thickness

LV:

Left ventricle

LVIDd:

Left ventricular end-diastolic diameter

LVIDs:

Left ventricular end-systolic diameter

LVM:

Left ventricular mass

LVMI:

Left ventricular mass indexed to body surface area

LVPWd:

Left ventricular posterior wall thickness in diastole

LVPWs:

Left ventricular posterior wall thickness in systole

MV:

Mitral valve

MVO2:

Myocardial oxygen consumption

PSL:

Pressure–strain loops

PSS:

Post-systolic shortening

PVL:

Pressure–volume loops

SBP:

Systolic blood pressure

VO2 max:

Maximal oxygen uptake

References

  1. Quinones MA, Gaasch WH, Alexander JK (1976) Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 53(2):293–302. https://doi.org/10.1161/01.cir.53.2.293

    Article  CAS  PubMed  Google Scholar 

  2. Klautz RJ, Teitel DF, Steendijk P, van Bel F, Baan J (1995) Interaction between afterload and contractility in the newborn heart: evidence of homeometric autoregulation in the intact circulation. J Am Coll Cardiol 25(6):1428–1435. https://doi.org/10.1016/0735-1097(94)00562-5

    Article  CAS  PubMed  Google Scholar 

  3. Fukuta H, Little WC (2008) The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail Clin 4(1):1–11. https://doi.org/10.1016/j.hfc.2007.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carabello BA (2002) Evolution of the study of left ventricular function: everything old is new again. Circulation 105(23):2701–2703. https://doi.org/10.1161/01.cir.0000021240.86593.9d

    Article  PubMed  Google Scholar 

  5. Mele D, Pasanisi G, Capasso F, De Simone A, Morales MA, Poggio D, Capucci A, Tabacchi G, Sallusti L, Ferrari R (2006) Left intraventricular myocardial deformation dyssynchrony identifies responders to cardiac resynchronization therapy in patients with heart failure. Eur Heart J 27(9):1070–1078. https://doi.org/10.1093/eurheartj/ehi814

    Article  PubMed  Google Scholar 

  6. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191. https://doi.org/10.1016/j.echo.2012.10.008

    Article  PubMed  Google Scholar 

  7. Kuhtz-Buschbeck JP, Drake-Holland A, Noble MIM, Lohff B, Schaefer J (2018) Rediscovery of Otto Frank’s contribution to science. J Mol Cell Cardiol 1(119):96–103. https://doi.org/10.1016/j.yjmcc.2018.04.017 (Erratum in: J Mol Cell Cardiol. 2018;123:58)

    Article  CAS  Google Scholar 

  8. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.1981.240.1.H39

    Article  Google Scholar 

  9. Suga H (1979) Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236(3):H498-505. https://doi.org/10.1152/ajpheart.1979.236.3.H498

    Article  CAS  PubMed  Google Scholar 

  10. Bastos MB, Burkhoff D, Maly J, Daemen J, den Uil CA, Ameloot K, Lenzen M, Mahfoud F, Zijlstra F, Schreuder JJ, Van Mieghem NM (2020) Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J 41(12):1286–1297. https://doi.org/10.1093/eurheartj/ehz552

    Article  PubMed  Google Scholar 

  11. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, Haugaa KH, Opdahl A, Fjeld JG, Gjesdal O, Edvardsen T, Smiseth OA (2012) A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J 33(6):724–733. https://doi.org/10.1093/eurheartj/ehs016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van der Bijl P, Kostyukevich M, El Mahdiui M, Hansen G, Samset E, Ajmone Marsan N, Bax JJ, Delgado V (2019) A roadmap to assess myocardial work: from theory to clinical practice. JACC Cardiovasc Imaging 12(12):2549–2554. https://doi.org/10.1016/j.jcmg.2019.05.028

    Article  PubMed  Google Scholar 

  13. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Gjesdal O, Edvardsen T, Smiseth OA (2013) Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol Heart Circ Physiol 305(7):H996-1003

    Article  CAS  Google Scholar 

  14. Hubert A, Le Rolle V, Leclercq C, Galli E, Samset E, Casset C, Mabo P, Hernandez A, Donal E (2018) Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Cardiovasc Imaging 19(12):1372–1379. https://doi.org/10.1152/ajpheart.00191.2013

    Article  CAS  PubMed  Google Scholar 

  15. Schrub F, Schnell F, Donal E, Galli E (2020) Myocardial work is a predictor of exercise tolerance in patients with dilated cardiomyopathy and left ventricular dyssynchrony. Int J Cardiovasc Imaging 36(1):45–53. https://doi.org/10.1007/s10554-019-01689-4

    Article  PubMed  Google Scholar 

  16. Galli E, Vitel E, Schnell F, Le Rolle V, Hubert A, Lederlin M, Donal E (2019) Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis. Echocardiography 36(1):74–82

    Article  Google Scholar 

  17. Ebata R, Fujioka T, Diab SG, Pieles G, Ishii R, Ide H, Sun M, Slorach C, Liu K, Honjo O, Stortz G, Friedberg MK (2021) Asymmetric regional work contributes to right ventricular fibrosis, inefficiency, and dysfunction in pulmonary hypertension versus regurgitation. J Am Soc Echocardiogr 34(5):537-550.e3. https://doi.org/10.1016/j.echo.2020.12.011

    Article  PubMed  Google Scholar 

  18. Liu FZ, Wang XL, Zhang CQ (2021) Quantitative assessment of left ventricular myocardial work in chronic kidney disease patients by a novel non-invasive pressure-strain loop analysis method. Int J Cardiovasc Imaging 37(5):1567–1575

    Article  Google Scholar 

  19. Spinelli L, Giugliano G, Pisani A, Imbriaco M, Riccio E, Russo C, Cuocolo A, Trimarco B, Esposito G (2021) Does left ventricular function predict cardiac outcome in Anderson-Fabry disease? Int J Cardiovasc Imaging 37(4):1225–1236. https://doi.org/10.1016/j.echo.2020.12.011

    Article  PubMed  Google Scholar 

  20. Duchenne J, Aalen JM, Cvijic M, Larsen CK, Galli E, Bézy S, Beela AS, Ünlü S, Pagourelias ED, Winter S, Hopp E, Kongsgård E, Donal E, Fehske W, Smiseth OA, Voigt JU (2020) Acute redistribution of regional left ventricular work by cardiac resynchronization therapy determines long-term remodelling. Eur Heart J Cardiovasc Imaging 21(6):619–628. https://doi.org/10.1093/ehjci/jeaa003

    Article  PubMed  Google Scholar 

  21. Rowin EJ, Maron BJ, Wells S, Burrows A, Firely C, Koethe B, Patel AR, Maron MS (2021) Usefulness of global longitudinal strain to predict heart failure progression in patients with nonobstructive hypertrophic cardiomyopathy. Am J Cardiol 151:86–92. https://doi.org/10.1016/j.amjcard.2021.04.021

    Article  PubMed  Google Scholar 

  22. Haland TF, Hasselberg NE, Almaas VM, Dejgaard LA, Saberniak J, Leren IS, Berge KE, Haugaa KH, Edvardsen T (2017) The systolic paradox in hypertrophic cardiomyopathy. Open Heart 4(1):e000571. https://doi.org/10.1136/openhrt-2016-000571

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hara Y, Hamada M, Hiwada K (1999) Left ventricular end-systolic wall stress is a potent prognostic variable in patients with dilated cardiomyopathy. Jpn Circ J 63(3):196–200. https://doi.org/10.1253/jcj.63.196

    Article  CAS  PubMed  Google Scholar 

  24. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–495. https://doi.org/10.1016/j.echo.2010.03.019

    Article  PubMed  Google Scholar 

  25. Wilson JR, Reichek N, Hirshfeld J (1980) Noninvasive assessment of load reduction in patients with asymptomatic aortic regurgitation. Am J Med 68(5):664–674. https://doi.org/10.1016/j.echo.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  26. Grossman W, Jones D, Mclaurin LP, Grossman W, Jones D, Mclaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig 56(1):56–64. https://doi.org/10.1172/JCI108079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65(1):99–108

    Article  CAS  Google Scholar 

  28. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d’Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16(1):1–11. https://doi.org/10.1093/ehjci/jeu184

    Article  CAS  PubMed  Google Scholar 

  29. Pradhan S, Mullikin A, Zang H, Ollberding NJ, Stark S, Hill GD, Chin C, Tretter JT (2021) Decreased global myocardial work efficiency correlates with coronary vasculopathy in pediatric heart transplant patients. Pediatr Cardiol. https://doi.org/10.1007/s00246-021-02748-1

    Article  PubMed  Google Scholar 

  30. Pham TTM, Truong VT, Vu PN, Tran TX, Nguyen NNH, Nguyen LPT, Tu HNT, Palmer C, Tretter JT, Levy P, Mazur W, Pham VN (2021) Echocardiographic reference ranges of non-invasive myocardial work indices in children. Pediatr Cardiol. https://doi.org/10.1007/s00246-021-02695-x

    Article  PubMed  Google Scholar 

  31. Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B, Chamberlain R, Scalia GM (2019) A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 20(1):31–39

    Article  Google Scholar 

  32. Podroužková H, Meluzín J, Hude P, Krejčí J, Špinarová L, Vítovec J (2012) Post-systolic shortening influences early diastolic tilling in patients with dilated cardiomyopathy. Cor Vasa 54(2):62–67

    Article  Google Scholar 

  33. Brainin P (2021) Myocardial postsystolic shortening and early systolic lengthening: current status and future directions. Diagnostics 11(8):1428. https://doi.org/10.3390/diagnostics11081428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sogaard P, Egeblad H, Kim WY, Jensen HK, Pedersen AK, Kristensen B, Mortensen PT (2002) Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 40:723–730

    Article  Google Scholar 

  35. Yu CM, Fung JWH, Zhang Q, Chan CK, Chan YS, Lin H, Kum LCC, Kong SL, Zhang Y, Sanderson JE (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110:66–73

    Article  Google Scholar 

  36. Kim IS, Izawa H, Sobue T, Ishihara H, Somura F, Nishizawa T, Nagata K, Iwase M, Yokota M (2002) Prognostic value of mechanical efficiency in ambulatory patients with idiopathic dilated cardiomyopathy in sinus rhythm. J Am Coll Cardiol 39(8):1264–1268. https://doi.org/10.1016/s0735-1097(02)01775-8

    Article  PubMed  Google Scholar 

  37. Bing RJ, Hammond MM, Handelsman MD, Powers SR, Spencer MD, Eckenhoff MD, Goodale MD, Hafkenschiel MD, Kety MD (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38(1):1–24. https://doi.org/10.1016/0002-8703(49)90788-7

    Article  CAS  PubMed  Google Scholar 

  38. Ishihara H, Yokota M, Sobue T, Saito H (1994) Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 23(2):406–416. https://doi.org/10.1016/s0002-8703(96)90434-2

    Article  CAS  PubMed  Google Scholar 

  39. Kanda H, Yokota M, Ishihara H, Nagata K, Kato R, Sobue T (1996) A novel inotropic vasodilator, OPC-18790, reduces myocardial oxygen consumption and improves mechanical efficiency with congestive heart failure. Am Heart J 132(2 Pt 1):361–368. https://doi.org/10.1016/s0002-8703(96)90434-2

    Article  CAS  PubMed  Google Scholar 

  40. Flachskampf FA (2021) Letter to the editor regarding the recent publication of Hiemstra et al., myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome. J Am Soc Echocardiogr 34(2):201. https://doi.org/10.1016/j.echo.2020.10.007

    Article  PubMed  Google Scholar 

  41. Lytrivi ID, Blume ED, Rhodes J, Dillis S, Gauvreau K, Singh TP (2013) Prognostic value of exercise testing during heart transplant evaluation in children. Circ Heart Fail 6(4):792–799. https://doi.org/10.1016/j.echo.2020.10.007

    Article  PubMed  Google Scholar 

  42. Guimarães GV, d’Avila VM, Camargo PR, Moreira LF, Lanz JR, Bocchi EA (2008) Prognostic value of cardiopulmonary exercise testing in children with heart failure secondary to idiopathic dilated cardiomyopathy in a non-beta-blocker therapy setting. Eur J Heart Fail 10(6):560–565. https://doi.org/10.1016/j.ejheart.2008.04.009 (Erratum in: Eur J Heart Fail. 2008;10(8):814. Luces, Jose Ramon Lanz [corrected to Lanz, Jose Ramon])

    Article  CAS  PubMed  Google Scholar 

  43. Chen CK, Manlhiot C, Russell JL, Kantor PF, McCrindle BW, Conway J (2017) The utility of cardiopulmonary exercise testing for the prediction of outcomes in ambulatory children with dilated cardiomyopathy. Transplantation 101(10):2455–2460. https://doi.org/10.1097/TP.0000000000001672

    Article  PubMed  Google Scholar 

  44. Patel MD, Mohan J, Schneider C, Bajpai G, Purevjav E, Canter CE, Towbin J, Bredemeyer A, Lavine KJ (2017) Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight 2(14):e94382. https://doi.org/10.1172/jci.insight.94382

    Article  PubMed Central  Google Scholar 

  45. Hiemstra YL, van der Bijl P, El Mahdiui M, Bax JJ, Delgado V, Marsan NA (2020) Myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome. J Am Soc Echocardiogr 33(10):1201–1208. https://doi.org/10.1016/j.echo.2020.05.010

    Article  PubMed  Google Scholar 

  46. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342(24):1778–1785

    Article  CAS  Google Scholar 

  47. Olivotto I, Gistri R, Petrone P, Pedemonte E, Vargiu D, Cecchi F (2003) Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 41(2):315–321. https://doi.org/10.1016/s0735-1097(02)02713-4

    Article  PubMed  Google Scholar 

  48. Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, González A, Colan SD, Seidman JG, Díez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563. https://doi.org/10.1056/NEJMoa1002659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coats CJ, Rantell K, Bartnik A, Patel A, Mist B, McKenna WJ, Elliott PM (2015) Cardiopulmonary exercise testing and prognosis in hypertrophic cardiomyopathy. Circ Heart Fail 8(6):1022–1031

    Article  CAS  Google Scholar 

  50. Magrì D, Santolamazza C (2017) Cardiopulmonary exercise test in hypertrophic cardiomyopathy. Ann Am Thorac Soc 14(Supplement_1):S102–S109. https://doi.org/10.1513/AnnalsATS.201611-884FR

    Article  PubMed  Google Scholar 

  51. Lele SS, Thomson HL, Seo H, Belenkie I, McKenna WJ, Frenneaux MP (1995) Exercise capacity in hypertrophic cardiomyopathy. Role of stroke volume limitation, heart rate, and diastolic filling characteristics. Circulation 92(10):2886–2894. https://doi.org/10.1161/01.cir.92.10.2886

    Article  CAS  PubMed  Google Scholar 

  52. Jones S, Elliott PM, Sharma S, McKenna WJ, Whipp BJ (1998) Cardiopulmonary responses to exercise in patients with hypertrophic cardiomyopathy. Heart 80(1):60–67. https://doi.org/10.1136/hrt.80.1.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kjaergaard J, Johnson BD, Pellikka PA, Cha SS, Oh JK, Ommen SR (2005) Left atrial index is a predictor of exercise capacity in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 18(12):1373–1380. https://doi.org/10.1016/j.echo.2005.05.020

    Article  PubMed  Google Scholar 

  54. Roemer S, Jaglan A, Santos D, Umland M, Jain R, Tajik AJ, Khandheria BK (2021) The utility of myocardial work in clinical practice. J Am Soc Echocardiogr 34(8):807–818. https://doi.org/10.1016/j.echo.2021.04.013

    Article  PubMed  Google Scholar 

  55. Chan J, Edwards NFA, Scalia GM, Khandheria BK (2020) Myocardial work: a new type of strain imaging? J Am Soc Echocardiogr 33(10):1209–1211. https://doi.org/10.1016/j.echo.2020.05.004

    Article  PubMed  Google Scholar 

  56. Zhao X, Tan RS, Tang HC, Teo SK, Su Y, Wan M, Leng S, Zhang JM, Allen J, Kassab GS, Zhong L (2018) Left ventricular wall stress is sensitive marker of hypertrophic cardiomyopathy with preserved ejection fraction. Front Physiol 28(9):250. https://doi.org/10.3389/fphys.2018.00250

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Medical Writing Center at Children’s Mercy Kansas City for editing this manuscript.

Funding

The authors received no financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa M. Aly.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest of this study.

Ethical Approval

The study was approved by the hospital’s Institutional Review Board.

Informed Consent

Informed consent was obtained from their parents/guardians. Assent was also obtained from children aged 7 and older.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, D.M., Nguyen, M., Auerbach, S. et al. Pressure–Strain Loops, a Novel Non-invasive Approach for Assessment of Children with Cardiomyopathy. Pediatr Cardiol 43, 1704–1715 (2022). https://doi.org/10.1007/s00246-022-02902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-022-02902-3

Keywords

Navigation