Skip to main content
Log in

Improved diastolic dysfunction is associated with higher forward flow and better prognosis in chronic heart failure

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The benefit of repeat assessment of left ventricular (LV) systolic and diastolic function in heart failure (HF) remains uncertain. We assessed the prognostic value of repeat echocardiographic assessment of LV filling pressure (LVFP) and its interaction with cardiac index (CI) in ambulatory patients with chronic HF and reduced ejection fraction (HFrEF). We enrolled 357 patients (age 68 ± 11 years; 22% female) with chronic HFrEF. Patients underwent a clinical and echocardiographic examination at baseline. LVFP as assessed by the 2016 Guidelines and Doppler-derived CI were estimated. After the second echocardiographic examination, patients were followed for a median time of 30 months. The study endpoint included all-cause death and hospitalization for worsening HF. Patients who normalized LVFP or showed persistently normal LVFP at the follow-up examination had a significantly lower mortality rate than those with worsening or persistently raised LVFP (p < 0.0001). After stratification by CI, patients with elevated LVFP and CI < 2.0 l/min/m2 had a further worse outcome than those with elevated LVFP and CI ≥ 2.0 l/min/m2 (p < 0.0001). Multivariate survival analysis confirmed an independent prognostic impact of changes in LVFP, incremental to that of established clinical, laboratory and echocardiographic predictors. Repeat assessment of LVFP and CI significantly improved risk stratification of chronic HFrEF outpatients compared to baseline evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mele D (2019) From left ventricular ejection fraction to cardiac hemodynamics : role of echocardiography in evaluating patients with heart failure

  2. Lester SJ, Tajik AJ, Nishimura RA et al (2008) Unlocking the mysteries of diastolic function deciphering the rosetta stone 10 years later. J Am Coll Cardiol 51:679–689. https://doi.org/10.1016/j.jacc.2007.09.061

    Article  PubMed  Google Scholar 

  3. Pozzoli M, Capomolla S, Pinna G et al (1996) Doppler echocardiography reliably predicts pulmonary artery wedge pressure in patients with chronic heart failure with and without mitral regurgitation. J Am Coll Cardiol 27:883–893. https://doi.org/10.1016/0735-1097(95)00553-6

    Article  CAS  PubMed  Google Scholar 

  4. Pinamonti B, Zecchin M, Lenarda ADI et al (1997) Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol 29:604–612. https://doi.org/10.1016/S0735-1097(96)00539-6

    Article  CAS  PubMed  Google Scholar 

  5. Whalley GA, Mhs C, Doughty RN et al (2002) Pseudonormal mitral filling pattern predicts hospital re-admission in patients with congestive heart failure. J Am Coll Cardiol 39:1787–1795. https://doi.org/10.1016/S0735-1097(02)01868-5

    Article  PubMed  Google Scholar 

  6. Lancellotti P, Galderisi M, Edvardsen T et al (2017) Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study. Eur Heart J. https://doi.org/10.1093/ehjci/jex067

    Article  PubMed  Google Scholar 

  7. Tobushi T, Nakano M, Hosokawa K et al (2017) Improved diastolic function is associated with higher cardiac output in patients with heart failure irrespective of left ventricular ejection fraction. J Am Heart Assoc 6(3):e003389. https://doi.org/10.1161/JAHA.116.003389

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stevenson LW, Tillisch JH (1986) Maintenance of cardiac output with normal filling pressures in patients with dilated heart failure. Circulation 74:1303–1308. https://doi.org/10.1161/01.CIR.74.6.1303

    Article  CAS  PubMed  Google Scholar 

  9. Cooper LB, Mentz RJ, Stevens SR et al (2016) Hemodynamic predictors of heart failure morbidity and mortality: fluid or flow? J Cardiol Fail 22:182–189. https://doi.org/10.1016/j.cardfail.2015.11.012

    Article  Google Scholar 

  10. Hamdan R, Charif F, Zein A, Issa M, Najjar C, Abdallah H, Fakih SSM (2019) Noninvasive monitoring of cardiac output: a useful tool yet? J Cardiovasc Echogr 29:165

    Article  Google Scholar 

  11. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  12. Hahn RT, Pibarot P (2017) Accurate measurement of left ventricular outflow tract diameter: comment on the updated recommendations for the echocardiographic assessment of aortic valve stenosis. J Am Soc Echocardiogr 30:1038–1041. https://doi.org/10.1016/j.echo.2017.06.002

    Article  PubMed  Google Scholar 

  13. Barbier P, Cucco C, Guglielmo M et al (2020) Estimation of increased pulmonary wedge pressure by an algorithm based on noninvasively measured pulmonary diastolic pressure in cardiac patients independent of left ventricular ejection fraction. Echocardiography 37:215–222. https://doi.org/10.1111/echo.14581

    Article  PubMed  Google Scholar 

  14. Ibrahim NE, Burnett JC, Butler J et al (2020) Natriuretic peptides as inclusion criteria in clinical trials: a JACC: heart failure position paper. JACC Heart Fail 8:347–358. https://doi.org/10.1016/j.jchf.2019.12.010

    Article  PubMed  Google Scholar 

  15. Stevenson LW (1999) Tailored therapy to hemodynamic goals for advanced heart failure. Eur J Heart Fail 1:251–257. https://doi.org/10.1016/S1388-9842(99)00015-X

    Article  CAS  PubMed  Google Scholar 

  16. Heywood JT, Jermyn R, Shavelle D et al (2017) Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation 135:1509–1517. https://doi.org/10.1161/CIRCULATIONAHA.116.026184

    Article  PubMed  Google Scholar 

  17. Temporelli PL, Scapellato F, Eleuteri E et al (2010) Doppler echocardiography in advanced systolic heart failure: a noninvasive alternative to Swan-Ganz Catheter. Circ Heart Fail 3:387–394. https://doi.org/10.1161/CIRCHEARTFAILURE.108.809590

    Article  PubMed  Google Scholar 

  18. Nagueh SF, Bhatt R, Vivo RP et al (2011) Echocardiographic evaluation of hemodynamics in patients with decompensated systolic heart failure. Circ Cardiovasc Imaging 4:220–227. https://doi.org/10.1161/CIRCIMAGING.111.963496

    Article  PubMed  Google Scholar 

  19. Yancy CW, Jessup M, Bozkurt B et al (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. Circulation 136:e137–e161. https://doi.org/10.1161/CIR.0000000000000509

    Article  PubMed  Google Scholar 

  20. Balaney B, Medvedofsky D, Mediratta A, et al (2018) HHS Public Access. 31:79–88https://doi.org/10.1016/j.echo.2017.09.002.Invasive

  21. Albakri A (2019) Low-output heart failure: a review of clinical status and meta-analysis of diagnosis and clinical management methods. Clin Med Investig. https://doi.org/10.15761/cmi.1000179

    Article  Google Scholar 

  22. Mele D, Pestelli G, Dini FL et al (2020) Novel echocardiographic approach to hemodynamic phenotypes predicts outcome of patients hospitalized with heart failure. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.119.009939

    Article  PubMed  Google Scholar 

  23. Abbas AE, Khoury Abdulla R, Aggrawal A et al (2017) A novel echocardiographic hemodynamic classification of heart failure based on stroke volume index and left atrial pressure. Echocardiography 34:1417–1425. https://doi.org/10.1111/echo.13642

    Article  PubMed  Google Scholar 

  24. Kim KH, Jentzer JC, Wiley BM et al (2021) Diamond-Forrester classification using echocardiography haemodynamic assessment in cardiac intensive care unit patients. ESC Heart Fail. https://doi.org/10.1002/ehf2.13527

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simioniuc A, Carluccio E, Ghio S et al (2016) Echo and natriuretic peptide guided therapy improves outcome and reduces worsening renal function in systolic heart failure: an observational study of 1137 outpatients. Int J Cardiol 224:416–423. https://doi.org/10.1016/j.ijcard.2016.09.034

    Article  PubMed  Google Scholar 

  26. Pugliese NR, Fabiani I, Santini C et al (2019) Value of combined cardiopulmonary and echocardiography stress test to characterize the haemodynamic and metabolic responses of patients with heart failure and mid-range ejection fraction. Eur Heart J Cardiovasc Imaging 20:828–836. https://doi.org/10.1093/ehjci/jez014

    Article  PubMed  Google Scholar 

  27. Pugliese NR, Fabiani I, Mandoli GE et al (2019) Echo-derived peak cardiac power output-to-left ventricular mass with cardiopulmonary exercise testing predicts outcome in patients with heart failure and depressed systolic function. Eur Heart J Cardiovasc Imaging 20:700–708. https://doi.org/10.1093/ehjci/jey172

    Article  PubMed  Google Scholar 

  28. Fabiani I, Pugliese NR, Galeotti GG et al (2019) The added value of exercise stress echocardiography in patients with heart failure. Am J Cardiol 123:1470–1477. https://doi.org/10.1016/j.amjcard.2019.02.008

    Article  PubMed  Google Scholar 

  29. Pugliese NR, De Biase N, Gargani L et al (2020) Predicting the transition to and progression of heart failure with preserved ejection fraction: a weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol. https://doi.org/10.1093/eurjpc/zwaa129

    Article  PubMed  Google Scholar 

  30. Pugliese NR, De Biase N, Conte L et al (2021) Cardiac reserve and exercise capacity: insights from combined cardiopulmonary and exercise echocardiography stress testing. J Am Soc Echocardiogr 34:38–50. https://doi.org/10.1016/j.echo.2020.08.015

    Article  PubMed  Google Scholar 

  31. Pugliese NR, Paneni F, Mazzola M et al (2021) Impact of epicardial adipose tissue on cardiovascular hemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. https://doi.org/10.1002/EJHF.2337

    Article  PubMed  Google Scholar 

  32. Lupón J, Díez-López C, de Antonio M et al (2017) Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail 19:1615–1623. https://doi.org/10.1002/ejhf.824

    Article  PubMed  Google Scholar 

  33. van den Berg VJ, Strachinaru M, Akkerhuis KM et al (2019) Repeated echocardiograms do not provide incremental prognostic value to single echocardiographic assessment in minimally symptomatic patients with chronic heart failure: results of the bio-SHiFT study. J Am Soc Echocardiogr 32:1000–1009. https://doi.org/10.1016/j.echo.2019.04.419

    Article  PubMed  Google Scholar 

  34. Tschöpe C, Kasner M (2014) Can speckle-tracking imaging improve the reliability of echocardiographic parameters for outcome evaluation in clinical trials? Eur Heart J 35:605–607. https://doi.org/10.1093/eurheartj/eht217

    Article  PubMed  Google Scholar 

  35. Ritzema JL, Richards AM, Crozier IG et al (2011) Serial doppler echocardiography and tissue doppler imaging in the detection of elevated directly measured left atrial pressure in ambulant subjects with chronic heart failure. JACC Cardiovasc Imaging 4:927–934. https://doi.org/10.1016/j.jcmg.2011.07.004

    Article  PubMed  Google Scholar 

  36. Jones R, Varian F, Alabed S et al (2021) Meta-analysis of echocardiographic quantification of left ventricular filling pressure. ESC Heart Fail 8:566–576. https://doi.org/10.1002/ehf2.13119

    Article  PubMed  Google Scholar 

  37. Andersen OS, Smiseth OA, Dokainish H et al (2017) Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol 69:1937–1948. https://doi.org/10.1016/j.jacc.2017.01.058

    Article  PubMed  Google Scholar 

  38. Mele D, Andrade A, Bettencourt P et al (2020) From left ventricular ejection fraction to cardiac hemodynamics: role of echocardiography in evaluating patients with heart failure. Heart Fail Rev 25:217–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Riccardo Pugliese.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, F.L., Ballo, P., Pugliese, N.R. et al. Improved diastolic dysfunction is associated with higher forward flow and better prognosis in chronic heart failure. Int J Cardiovasc Imaging 38, 727–737 (2022). https://doi.org/10.1007/s10554-021-02457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02457-z

Keywords

Navigation