Skip to main content

Advertisement

Log in

Coronary plaque vulnerability in statin-treated patients with elevated LDL-C and hs-CRP: optical coherence tomography study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

There have been no previous attempts to assess coronary plaque morphology in statin-treated patients with combined residual cholesterol and inflammatory risk. The aim of this study was to characterize the morphology using optical coherence tomography (OCT) and to investigate the underlying molecular mechanisms. Two hundred seventy statin-treated patients with stable coronary artery disease who underwent OCT imaging prior to elective percutaneous coronary intervention were included in this single-center retrospective analysis. Subjects were stratified into four groups based on low-density lipoprotein cholesterol (LDL-C) and high-sensitivity C-reactive protein (hs-CRP) levels using 70 mg/dl and 2 mg/L as cut-offs, respectively. OCT images of the target lesions were assessed. For a subset of patients, peripheral blood mononuclear cells (PBMC) were isolated, and gene expression was characterized using microarray analysis. Patients with high LDL-C and high hs-CRP demonstrated a higher frequency of lipid-rich plaques (LRP) (91%, P = 0.03) by OCT. LRPs in these patients had a greater maximal lipid arc (186.6 ± 92.5°, P = 0.047). In addition, plaques from patients who did not achieve dual-target were less frequently calcified (P = 0.003). If calcification was present, it was characterized by a lower maximal arc (P = 0.016) and shorter length (P = 0.025). PBMC gene expression analysis demonstrated functional enrichment of toll-like receptors (TLRs) 1–9 to be associated with high LDL-C and hs-CRP. Obstructive coronary lesions in patients on statin therapy with combined residual cholesterol and inflammatory risk demonstrated a higher prevalence of LRP with greater maximal lipid arcs and more frequent spotty calcifications. PBMC from these patients revealed functional enrichment of TLR 1–9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Available.

References

  1. Bohula EA, Giugliano RP, Cannon CP, Zhou J, Murphy SA, White JA, Tershakovec AM, Blazing MA, Braunwald E (2015) Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation 132(13):1224–1233. https://doi.org/10.1161/circulationaha.115.018381

    Article  CAS  PubMed  Google Scholar 

  2. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, Committee FS, Investigators (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713–1722. https://doi.org/10.1056/NEJMoa1615664

    Article  CAS  PubMed  Google Scholar 

  3. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359(21):2195–2207. https://doi.org/10.1056/NEJMoa0807646

    Article  CAS  PubMed  Google Scholar 

  4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  5. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372(25):2387–2397. https://doi.org/10.1056/NEJMoa1410489

    Article  CAS  PubMed  Google Scholar 

  6. Kalkman DN, Aquino M, Claessen BE, Baber U, Guedeney P, Sorrentino S, Vogel B, de Winter RJ, Sweeny J, Kovacic JC, Shah S, Vijay P, Barman N, Kini A, Sharma S, Dangas GD, Mehran R (2018) Residual inflammatory risk and the impact on clinical outcomes in patients after percutaneous coronary interventions. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy633

    Article  PubMed  Google Scholar 

  7. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555. https://doi.org/10.1161/01.Cir.0000159354.43778.69

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tuomisto TT, Lumivuori H, Kansanen E, Häkkinen SK, Turunen MP, van Thienen JV, Horrevoets AJ, Levonen AL, Ylä-Herttuala S (2008) Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc Res 78(1):175–184. https://doi.org/10.1093/cvr/cvn007

    Article  CAS  PubMed  Google Scholar 

  9. Kini AS, Vengrenyuk Y, Shameer K, Maehara A, Purushothaman M, Yoshimura T, Matsumura M, Aquino M, Haider N, Johnson KW, Readhead B, Kidd BA, Feig JE, Krishnan P, Sweeny J, Milind M, Moreno P, Mehran R, Kovacic JC, Baber U, Dudley JT, Narula J, Sharma S (2017) Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: the yellow II study. J Am Coll Cardiol 69(6):628–640. https://doi.org/10.1016/j.jacc.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  10. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol 59(12):1058–1072. https://doi.org/10.1016/j.jacc.2011.09.079

    Article  PubMed  Google Scholar 

  11. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The Reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649-d655. https://doi.org/10.1093/nar/gkx1132

    Article  CAS  PubMed  Google Scholar 

  12. Kim S-J, Lee H, Kato K, Yonetsu T, Xing L, Zhang S, Jang I-K (2012) Reproducibility of in vivo measurements for fibrous cap thickness and lipid arc by OCT. JACC Cardiovasc Imaging 5(10):1072–1074. https://doi.org/10.1016/j.jcmg.2012.04.011

    Article  PubMed  Google Scholar 

  13. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13-18. https://doi.org/10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, Kuroi A, Tsujioka H, Ikejima H, Komukai K, Kataiwa H, Okouchi K, Kashiwaghi M, Ishibashi K, Matsumoto H, Takemoto K, Nakamura N, Hirata K, Mizukoshi M, Akasaka T (2009) Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J 30(11):1348–1355. https://doi.org/10.1093/eurheartj/ehp122

    Article  PubMed  Google Scholar 

  15. Xing L, Higuma T, Wang Z, Aguirre AD, Mizuno K, Takano M, Dauerman HL, Park SJ, Jang Y, Kim CJ, Kim SJ, Choi SY, Itoh T, Uemura S, Lowe H, Walters DL, Barlis P, Lee S, Lerman A, Toma C, Tan JWC, Yamamoto E, Bryniarski K, Dai J, Zanchin T, Zhang S, Yu B, Lee H, Fujimoto J, Fuster V, Jang IK (2017) Clinical significance of lipid-rich plaque detected by optical coherence tomography: a 4-year follow-up study. J Am Coll Cardiol 69(20):2502–2513. https://doi.org/10.1016/j.jacc.2017.03.556

    Article  PubMed  Google Scholar 

  16. Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24(7):1161–1170. https://doi.org/10.1161/01.atv.0000133194.94939.42

    Article  CAS  PubMed  Google Scholar 

  17. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110(22):3424–3429. https://doi.org/10.1161/01.Cir.0000148131.41425.E9

    Article  PubMed  Google Scholar 

  18. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  19. Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T (2013) Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 112(1):34–40. https://doi.org/10.1016/j.amjcard.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  20. Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VW, Virmani R, Daemen MJ (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53(17):1517–1527. https://doi.org/10.1016/j.jacc.2008.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson TW, Räber L, di Mario C, Bourantas C, Jia H, Mattesini A, Gonzalo N, de la Torre Hernandez JM, Prati F, Koskinas K, Joner M, Radu MD, Erlinge D, Regar E, Kunadian V, Maehara A, Byrne RA, Capodanno D, Akasaka T, Wijns W, Mintz GS, Guagliumi G (2019) Clinical use of intracoronary imaging Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 40(31):2566–2584. https://doi.org/10.1093/eurheartj/ehz332

    Article  PubMed  Google Scholar 

  22. Prati F, Romagnoli E, Gatto L, La Manna A, Burzotta F, Ozaki Y, Marco V, Boi A, Fineschi M, Fabbiocchi F, Taglieri N, Niccoli G, Trani C, Versaci F, Calligaris G, Ruscica G, Di Giorgio A, Vergallo R, Albertucci M, Biondi-Zoccai G, Tamburino C, Crea F, Alfonso F, Arbustini E (2020) Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J 41(3):383–391. https://doi.org/10.1093/eurheartj/ehz520

    Article  PubMed  Google Scholar 

  23. Gatto L, Paoletti G, Marco V, La Manna A, Fabbiocchi F, Cortese B, Vergallo R, Boi A, Fineschi M, Di Giorgio A, Taglieri N, Calligaris G, Budassi S, Burzotta F, Isidori F, Lella E, Ruscica G, Albertucci M, Tamburino C, Ozaki Y, Alfonso F, Arbustini E, Prati F (2021) Prevalence and quantitative assessment of macrophages in coronary plaques. Int J Cardiovasc Imaging 37(1):37–45. https://doi.org/10.1007/s10554-020-01957-8

    Article  PubMed  Google Scholar 

  24. Feig JE, Shang Y, Rotllan N, Vengrenyuk Y, Wu C, Shamir R, Torra IP, Fernandez-Hernando C, Fisher EA, Garabedian MJ (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6(12):e28534. https://doi.org/10.1371/journal.pone.0028534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Räber L, Koskinas KC, Yamaji K, Taniwaki M, Roffi M, Holmvang L, Garcia Garcia HM, Zanchin T, Maldonado R, Moschovitis A, Pedrazzini G, Zaugg S, Dijkstra J, Matter CM, Serruys PW, Lüscher TF, Kelbaek H, Karagiannis A, Radu MD, Windecker S (2019) Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc Imaging 12(8 Pt 1):1518–1528. https://doi.org/10.1016/j.jcmg.2018.08.024

    Article  PubMed  Google Scholar 

  26. Curtiss LK, Tobias PS (2009) Emerging role of toll-like receptors in atherosclerosis. J Lipid Res 50(Suppl):S340-345. https://doi.org/10.1194/jlr.R800056-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347(3):185–192. https://doi.org/10.1056/NEJMoa012673

    Article  CAS  PubMed  Google Scholar 

  28. Pasterkamp G, Van Keulen JK, De Kleijn DP (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest 34(5):328–334. https://doi.org/10.1111/j.1365-2362.2004.01338.x

    Article  CAS  PubMed  Google Scholar 

  29. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14. https://doi.org/10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC 3rd, Genco CA (2008) Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 196(1):146–154. https://doi.org/10.1016/j.atherosclerosis.2007.03.025

    Article  CAS  PubMed  Google Scholar 

  31. Castrillo A, Joseph SB, Vaidya SA, Haberland M, Fogelman AM, Cheng G, Tontonoz P (2003) Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 12(4):805–816

    Article  CAS  PubMed  Google Scholar 

  32. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101(29):10679–10684. https://doi.org/10.1073/pnas.0403249101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finberg RW, Wang JP, Kurt-Jones EA (2007) Toll like receptors and viruses. Rev Med Virol 17(1):35–43. https://doi.org/10.1002/rmv.525

    Article  CAS  PubMed  Google Scholar 

  34. Berencsi K, Endresz V, Klurfeld D, Kari L, Kritchevsky D, Gonczol E (1998) Early atherosclerotic plaques in the aorta following cytomegalovirus infection of mice. Cell Adhes Commun 5(1):39–47

    Article  CAS  PubMed  Google Scholar 

  35. Ilback NG, Mohammed A, Fohlman J, Friman G (1990) Cardiovascular lipid accumulation with coxsackie B virus infection in mice. Am J Pathol 136(1):159–167

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Raby AC, Holst B, Davies J, Colmont C, Laumonnier Y, Coles B, Shah S, Hall J, Topley N, Kohl J, Morgan BP, Labeta MO (2011) TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2. Eur J Immunol 41(9):2741–2752. https://doi.org/10.1002/eji.201041350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

None.

Funding

There are no sources of funding relevant to this submission.

Author information

Authors and Affiliations

Authors

Contributions

SC, KWJ, YV, UB, SKS, JN, and ASK contributed to conception and design, drafting and revising the manuscript, and final approval of manuscript submitted. HU, KY, NO, NB, SB, MD, VK, CH, and JS contributed to interpretation of data, drafting and revising the manuscript, and final approval of manuscript submitted.

Corresponding author

Correspondence to Annapoorna S. Kini.

Ethics declarations

Conflict of interest

Dr. Barman reports speaker/consultant fees from Boston Scientific, Cardiovascular Systems, Inc., and Terumo Medical. Dr. Baber has received speaker honoraria from AstraZeneca and Boston Scientific and has received honoraria from Amgen. Dr. Sharma reports honoraria from Abbot Vascular, Boston Scientific, and Cardiovascular Systems, Inc. for Speaker’s Bureau. The other authors have nothing to disclose.

Ethical approval

Patients were selected from institutional review board-approved clinical and imaging database of the Mount Sinai catheterization laboratory.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamaria, S., Ueyama, H., Yasumura, K. et al. Coronary plaque vulnerability in statin-treated patients with elevated LDL-C and hs-CRP: optical coherence tomography study. Int J Cardiovasc Imaging 38, 1157–1167 (2022). https://doi.org/10.1007/s10554-021-02238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02238-8

Keywords

Navigation