Skip to main content

Advertisement

Log in

Incremental improvement of diagnostic performance of coronary CT angiography for the assessment of coronary stenosis in the presence of calcium using a dual-layer spectral detector CT: validation by invasive coronary angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To investigate value of spectral reconstructions for the quantification of coronary stenosis in the presence of calcified or partially calcified plaques using a dual-layer spectral detector CT (SDCT). Seventy-two consecutive patients were retrospectively enrolled. Conventional 120 kVp images, eight virtual monoenergetic images (VMI) (70 to 140 keV), the effective atomic number (Z effective) and iodine no water images were reconstructed. Invasive coronary angiography was used as the reference standard. Parallel and serial testing were used to assess the incremental diagnostic value of Z effective and iodine no water images to the best VMI series. 122 coronary lesions of 72 patients (49 men and 23 women; 63.7 ± 10.2 years) were enrolled in analysis. Reconstruction at 100 keV yielded optimal diagnostic performance, the sensitivity, specificity, PPV, NPV and diagnostic accuracy to identify stenosis ≥ 50% or ≥ 70% were 84%, 70%, 80%, 76%, 79% and 78%, 98%, 93%, 91%, 92%, respectively. A serial combination (100 keV VMI followed by Z effective images) resulted in an improved specificity (from 70 to 80%) with a moderate loss of sensitivity (81% from 84%) in identifying ≥ 50% stenosis (P = 0.021). For patients with high Agatston score, this combination could further reduce false positive cases and improve diagnostic accuracy. 100 keV VMI provide optimal diagnostic performance for the detection of coronary stenosis in the presence of calcified or partially calcified plaques using a dual-layer SDCT, with further improvements obtained with the combined use of Z effective images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Datasets are available upon request.

Abbreviations

CTA:

Computed tomography angiography

CAD:

Coronary artery disease

HU:

Hounsfield-Unit

VMI:

Virtual monoenergetic images

SDCT:

Spectral detector CT

ICA:

Invasive coronary angiography

CTDIvol:

Volume of CT dose index

DLP:

Dose length product

SBI:

Spectral based images

SNR:

Signal-to-noise ratio

CNR:

Contrast-to-noise ratio

WL:

Window level

WW:

Window width

PPV:

Positive predictive value

NPV:

Negative predictive value

LR+:

Positive likelihood ratio

LR−:

Negative likelihood ratio

References

  1. Schuhbaeck A, Schmid J, Zimmer T, Muschiol G, Hell MM, Marwan M, Achenbach S (2016) Influence of the coronary calcium score on the ability to rule out coronary artery stenoses by coronary CT angiography in patients with suspected coronary artery disease. J Cardiovasc Comput Tomogr 10(5):343–350. https://doi.org/10.1016/j.jcct.2016.07.014

    Article  PubMed  Google Scholar 

  2. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249(1):119–126. https://doi.org/10.1148/radiol.2483071576

    Article  PubMed  Google Scholar 

  3. Dey D, Slomka P, Chien D, Fieno D, Abidov A, Saouaf R, Thomson L, Friedman JD, Berman DS (2006) Direct quantitative in vivo comparison of calcified atherosclerotic plaque on vascular MRI and CT by multimodality image registration. J Magn Res Imaging : JMRI 23(3):345–354. https://doi.org/10.1002/jmri.20520

    Article  Google Scholar 

  4. Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5(5):286–292. https://doi.org/10.1016/j.jcct.2011.07.001

    Article  PubMed  Google Scholar 

  5. Shmilovich H, Cheng VY, Dey D, Rajani R, Nakazato R, Otaki Y, Nakanishi R, Vashistha V, Min JK, Berman DS (2014) Optimizing image contrast display improves quantitative stenosis measurement in heavily calcified coronary arterial segments on coronary CT angiography: A proof-of-concept and comparison to quantitative invasive coronary angiography. Acad Radiol 21(6):797–804. https://doi.org/10.1016/j.acra.2014.02.016

    Article  PubMed  Google Scholar 

  6. Fuchs A, Kuhl JT, Chen MY, Vilades Medel D, Alomar X, Shanbhag SM, Helqvist S, Kofoed KF (2018) Subtraction CT angiography improves evaluation of significant coronary artery disease in patients with severe calcifications or stents-the C-Sub 320 multicenter trial. Eur Radiol 28(10):4077–4085. https://doi.org/10.1007/s00330-018-5418-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stehli J, Clerc OF, Fuchs TA, Possner M, Grani C, Benz DC, Buechel RR, Kaufmann PA (2016) Impact of monochromatic coronary computed tomography angiography from single-source dual-energy CT on coronary stenosis quantification. J Cardiovasc Comput Tomogr 10(2):135–140. https://doi.org/10.1016/j.jcct.2015.12.008

    Article  PubMed  Google Scholar 

  8. Guler E, Vural V, Unal E, Kose IC, Akata D, Karcaaltincaba M, Hazirolan T (2016) Effect of iterative reconstruction on image quality in evaluating patients with coronary calcifications or stents during coronary computed tomography angiography: a pilot study. Anatol J Cardiol 16(2):119–124. https://doi.org/10.5152/akd.2015.5920

    Article  PubMed  Google Scholar 

  9. Carrascosa P, Leipsic JA, Deviggiano A, Capunay C, Vallejos J, Goldsmit A, De Zan MC, Rodriguez-Granillo GA (2016) Virtual Monochromatic Imaging in Patients with Intermediate to High Likelihood of Coronary Artery Disease: Impact of Coronary Calcification. Acad Radiol 23(12):1490–1497. https://doi.org/10.1016/j.acra.2016.08.002

    Article  PubMed  Google Scholar 

  10. Yi Y, Zhao XM, Wu RZ, Wang Y, Vembar M, Jin ZY, Wang YN (2019) Low dose and low contrast medium coronary Ct angiography using dual-layer spectral detector CT. Int Heart J 60(3):608–617. https://doi.org/10.1536/ihj.18-340

    Article  PubMed  Google Scholar 

  11. Huang X, Gao S, Ma Y, Lu X, Jia Z, Hou Y (2020) The optimal monoenergetic spectral image level of coronary computed tomography (CT) angiography on a dual-layer spectral detector CT with half-dose contrast media. Quant Imaging Med Surg 10(3):592-603. https://doi.org/10.21037/qims.2020.02.17

  12. Nakajima S, Ito H, Mitsuhashi T, Kubo Y, Matsui K, Tanaka I, Fukui R, Omori H, Nakaoka T, Sakura H, Ueno E, Machida H (2017) Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis 261:138–143. https://doi.org/10.1016/j.atherosclerosis.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  13. Boussel L, Coulon P, Thran A, Roessl E, Martens G, Sigovan M, Douek P (2014) Photon counting spectral CT component analysis of coronary artery atherosclerotic plaque samples. Br J Radiol 87(1040):20130798. https://doi.org/10.1259/bjr.20130798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trattner S, Halliburton S, Thompson CM, Xu Y, Chelliah A, Jambawalikar SR, Peng B, Peters MR, Jacobs JE, Ghesani M, Jang JJ, Al-Khalidi H, Einstein AJ (2018) Cardiac-specific conversion factors to estimate radiation effective dose from dose-length product in computed tomography. JACC Cardiovasc Imaging 11(1):64–74. https://doi.org/10.1016/j.jcmg.2017.06.006

    Article  PubMed  Google Scholar 

  15. Pontone G, Bertella E, Mushtaq S, Loguercio M, Cortinovis S, Baggiano A, Conte E, Annoni A, Formenti A, Beltrama V, Guaricci AI, Andreini D (2014) Coronary artery disease: diagnostic accuracy of CT coronary angiography–a comparison of high and standard spatial resolution scanning. Radiology 271(3):688–694. https://doi.org/10.1148/radiol.13130909

    Article  PubMed  Google Scholar 

  16. Pflederer T, Rudofsky L, Ropers D, Bachmann S, Marwan M, Daniel WG, Achenbach S (2009) Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography. AJR Am J Roentgenol 192(4):1045–1050. https://doi.org/10.2214/ajr.08.1025

    Article  PubMed  Google Scholar 

  17. Hoe JW, Toh KH (2007) A practical guide to reading CT coronary angiograms–how to avoid mistakes when assessing for coronary stenoses. Int J Cardiovasc Imaging 23(5):617–633. https://doi.org/10.1007/s10554-006-9173-9

    Article  PubMed  Google Scholar 

  18. Judkins MP (1967) Selective coronary arteriography I. A percutaneous transfemoral technic. Radiology 89(5):815–824. https://doi.org/10.1148/89.5.815

    Article  CAS  PubMed  Google Scholar 

  19. Iovanescu D, Frandes M, Lungeanu D, Burlea A, Miutescu BP, Miutescu E (2016) Diagnosis reliability of combined flexible sigmoidoscopy and fecal-immunochemical test in colorectal neoplasia screening. OncoTargets Ther 9:6819–6828. https://doi.org/10.2147/ott.s122425

    Article  Google Scholar 

  20. Yan RT, Miller JM, Rochitte CE, Dewey M, Niinuma H, Clouse ME, Vavere AL, Brinker J, Lima JA, Arbab-Zadeh A (2013) Predictors of inaccurate coronary arterial stenosis assessment by CT angiography. JACC Cardiovasc Imaging 6(9):963–972. https://doi.org/10.1016/j.jcmg.2013.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Joseph PM, Spital RD (1981) The exponential edge-gradient effect in x-ray computed tomography. Phys Med Biol 26(3):473–487. https://doi.org/10.1088/0031-9155/26/3/010

    Article  CAS  PubMed  Google Scholar 

  22. Menvielle N, Goussard Y, Orban D, Soulez G (2005) Reduction of beam-hardening artifacts in X-Ray CT. Conf Proc: Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Ann Conf 2:1865–1868. https://doi.org/10.1109/iembs.2005.1616814

    Article  Google Scholar 

  23. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262. https://doi.org/10.1148/radiol.11100978

    Article  PubMed  Google Scholar 

  24. Rajiah P, Abbara S, Halliburton SS (2017) Spectral detector CT for cardiovascular applications. Diagn Int Radiol (Ankara, Turkey) 23(3):187–193. https://doi.org/10.5152/dir.2016.16255

    Article  Google Scholar 

  25. De Santis D, Caruso D, Schoepf UJ, Eid M, Albrecht MH, Duguay TM, Varga-Szemes A, Laghi A, De Cecco CN (2018) Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom. Eur Radiol 28(8):3473–3481. https://doi.org/10.1007/s00330-018-5308-3

    Article  PubMed  Google Scholar 

  26. Symons R, Choi Y, Cork TE, Ahlman MA, Mallek M, Bluemke DA, Sandfort V (2018) Optimized energy of spectral coronary CT angiography for coronary plaque detection and quantification. J Cardiovasc Comput Tomogr 12(2):108–114. https://doi.org/10.1016/j.jcct.2018.01.006

    Article  PubMed  Google Scholar 

  27. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy ct: principles, technical approaches, and clinical applications. Radiology 276(3):637–653. https://doi.org/10.1148/radiol.2015142631

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81873891, 2019), the “13th Five-Year Plan” National key R & D projects of China (Grant No. 2016YFC1300402; 2016YFC1300400, 2016), CAMS Innovation Fund for Medical Sciences (CIFMS) (Grant NO. 2020-I2M-C-T-B-034, 2020), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2018RC320004, 2018).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: ZJ, YW. Study concepts and design: YW. Literature research: CX, YY. Clinical studies: N/A. Experimental studies/data analysis: YH, HX. Statistical analysis: CX, WH. Manuscript preparation: CX, YY. Manuscript editing: YW, XL, MV, TL.

Corresponding author

Correspondence to Yining Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

According to the requirement of local institution, Institutional Review Board approval were waived off due to the retrospective nature of the study.

Consent to participate

Written informed consents were waived off due to the retrospective nature of the study.

Consent for publication

All the authors agree to publish the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yi, Y., Han, Y. et al. Incremental improvement of diagnostic performance of coronary CT angiography for the assessment of coronary stenosis in the presence of calcium using a dual-layer spectral detector CT: validation by invasive coronary angiography. Int J Cardiovasc Imaging 37, 2561–2572 (2021). https://doi.org/10.1007/s10554-021-02205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02205-3

Keywords

Navigation