Skip to main content
Log in

Changes of Microorganism and Corrosion Tendency During Fracturing of Flowback Fluid Recovery Wells of Shale Gas

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The study is focused on understanding microbiological changes and the corrosion tendency in the fracturing wells with a flowback fluid reuse during the exploration and production process in the Changning shale gas field, Sichuan. High-throughput sequencing technology and electrochemical workstation were used to analyze the pre-fracturing fluid, the flowback and produced water (FPW) at each stage of the production process of a single shale gas well in Southern Sichuan. The fracturing fluid was prepared with the flowback fluid. The results showed that during exploration and production, the dominant bacteria is Roseovarius (32.69%), and the others include Arcobacter, Marinobacter, Marinobacterium, etc. The dominant archaea is Methanthermobacter (59.19%), and the others include Methannolobus, Thermococcus, etc. The enrichment of the halophilic and halotolerant microorganisms is due to the changes of the fluid salinity. Besides, the relative abundance of the sulfate reducing bacteria (SRB) which can be identified as the cause of the microbiologically influenced corrosion (MIC) during the exploration and production process first dropped sharply from 21% to below 1% and finally rose to 31%. It is worth noting that the corrosion tendency shown by the electrochemical results is basically consistent with the change in abundance of SRB. This study preliminarily reveals the changes of microorganisms in the exploration and production process of fracturing with the flowback fluid, and provides new ideas for the prevention and control of corrosive microorganisms, protection against pipe corrosion, and effective management of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Wang, M. Liu, Y. Bentley, L. Feng, and C. Zhang, “Water use for shale gas extraction in the Sichuan Basin, China,” J. Environ. Manag., 226, 13-21(2018).

    Article  Google Scholar 

  2. J. H. Chen, “Shale gas exploration and development progress in China and the way forward,” IOP Conf. Ser., Earth Eviron. Sci., 113(1), 012178 (2018).

    Article  Google Scholar 

  3. C. Sun, H. Nie, W. Dang, Q. Chen, G. Zhang, W. Li, and Z. Lu, “Shale gas exploration and development in China: current status, geological challenges, and future directions,” Energy Fuels, 35, 6359-6379 (2021).

    Article  CAS  Google Scholar 

  4. X. Chen, Z. Liu, X. Liang, Z. Zhang, T. Zhang, H. Zhu, and J. Lang, “The shale gas revolution in China - problems and countermeasures,” Earth Sci. Res. J., 22, 215-221 (2018).

    Article  Google Scholar 

  5. K. B. Gregory, R. D. Vidic, and D. A. Dzombak, “Water management challenges sssociated with the production of shale gas by hydraulic fracturing,” Elements, 7, 181-186 (2011).

    Article  Google Scholar 

  6. D. S. Lee, J. D. Herman, D. Elsworth, H. T. Kim, and H. S. Lee, “A critical evaluation of unconventional gas recovery from the Marcellus shale, northeastern United States,” KSCE J. Civil Eng., 15, 679-687 (2011).

    Article  Google Scholar 

  7. B. D. Lutz, A. N. Lewis, and M. W. Doyle, “Generation, transport, and disposal of wastewater associated with Marcellus shale gas development,” Water Resour. Res., 49, 647-656 (2013).

    Article  CAS  Google Scholar 

  8. T. T. Eaton, “Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply,” Sci. Total Environ., 461, 158-169 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. S. Sharma, L. Bowman, K. Schroeder, and R. Hammack, “Assessing changes in gas migration pathways at a hydraulic fracturing site: example from Greene County, Pennsylvania, USA,” Appl. Geochem., 60, 51-58 (2015).

    Article  CAS  Google Scholar 

  10. X. Xie, T. Zhang, M. Wang, and Z. Huang, “Impact of shale gas development on regional water resources in China from water footprint assessment view,” Sci. Total Environ., 679, 317-327 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. C. Zou, Y. Ni, J. Li, A. Kondash, R. Coyte, N. Lauer, H. Cui, F. Liao, and A. Vengosh, “The water footprint of hydraulic fracturing in Sichuan Basin, China,” Sci. Total Environ., 630, 349-356 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. C. Zhong, J. Li, S. L. Flynn, C. L. Nesbo, C. Sun, K. von Gunten, B. D. Lanoil, G. G. Goss, J. W. Martin, and D. S. Alessi, “Temporal changes in microbial community composition and geochemistry in flowback and produced water from the Duvernay formation,” ACS Earth Space Chem., 3, 1047-1057 (2019).

    Article  CAS  Google Scholar 

  13. Y. Zhang, Z. Yu, H. Zhang, and I.P. Thompson, “Microbial distribution and variation in produced water from separators to storage tanks of shale gas wells in Sichuan Basin, China,” J. Environ. Sci. Water Resour., 3, 340-351 (2017).

    CAS  Google Scholar 

  14. A. M. Mohan, A. Hartsock, K. J. Bibby, R. W. Hammack, R. D. Vidic, and K. B. Gregory, “Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction,” Environ. Sci. Technol., 47, 13141-13150 (2013).

    Article  CAS  Google Scholar 

  15. P. J. Mouser, M. Borton, T. H. Darrah, A. Hartsock, and K. C. Wrighton, “Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface,” FEMS Microbiol. Ecol., 92(11), 166 (2016).

    Article  CAS  Google Scholar 

  16. M. Nemati, T. J. Mazutinec, G. E. Jenneman, G. Voordouw, “Control of biogenic H2S production with nitrite and molybdate,” J. Ind. Microbiol. Biotechnol., 26, 350-355 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Davis, C. G. Struchtemeyer, and M. S. Elshahed, “Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett shale (Texas, USA),” Microb. Ecol., 64, 942-954 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. C. G. Struchtemeyer and M. S. Elshahed, “Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA,” FEMS Microbiol. Ecol., 81, 13-25 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. M. F. Kirk, A. M. Martini, D. O. Breecker, D. R. Colman, C. Takacs-Vesbach, and S. T. Petsch, “Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir,” Chem. Geol., 332, 15-25 (2012).

    Article  CAS  Google Scholar 

  20. C. G. Struchtemeyer, J. P. Davis, and M. S. Elshahed, “Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett shale,” Appl. Environ. Microbiol, 77, 4744-4753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D. Xu, J. Wen, T. Gu, and I. Raad, “Biocide cocktail consisting of glutaraldehyde, ethylene diamine disuccinate (EDDS), and methanol for the mitigation of souring and biocorrosion, Corrosion, 68(11), 994-1002 (2012).

  22. D. Davies, “Understanding biofilm resistance to antibacterial agents,” Nat. Rev. Drug Discov., 2, 114-122 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. A. Vikram, D. Lipus, and K. Bibby, “Produced water exposure from hydraulic fracturing alters bacterial response to biocides,” Environ. Sci. Technol., 48(21), 13001-13009 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. M. Sharma, D. An, T. Liu, T. Pinnock, F. Cheng, and G. Voordouw, “Biocide-mediated corrosion of coiled tubing,” Plos One, 12, 1371 (2017).

    Google Scholar 

  25. Y. X. Li, N. N. Wang, G. J. Chen, and Z. J. Du, “Cohaesibacter celericrescens sp. nov., isolated from sea catfish,” Int. J. Syst. Evol. Microbiol., 69, 255-260 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. V. R. Sultanpuram, T. D. Lodha, V. R. Chintalapati, and S. Chintalapati, “Cohaesibacter haloalkalitolerans sp nov., isolated from a soda lake, and emended description of the genus Cohaesibacter,” Int. J. Syst. Evol. Microbiol., 63, 4271-4276 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. S. Hahnke, T. Langer, D. E. Koeck, and M. Klocke, “Description of Proteiniphilum saccharofermentans sp nov., Petrimonas mucosa sp nov., and Fermentimonas caenicola gen. nov., sp nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum,” Int. J. Syst. Evol. Microbiol., 66, 1466-1475 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. O. A. Podosokorskaya, I. V. Kublanov, A. L. Reysenbach, T. V. Kolganova, and E. A. Bonch-Osmolovskaya, “Thermosipho affectus sp nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent,” Int. J. Syst. Evol. Microbiol.y, 61, 1160-1164 (2011).

    Article  CAS  Google Scholar 

  29. S. J. Green, O. Prakash, P. Jasrotia, W. A. Overholt, E. Cardenas, D. Hubbard, J. M. Tiedje, D. B. Watson, C. W. Schadt, S. C. Brooks, and J. E. Kostka, “Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site,” Appl. Environ. Microbiol., 78, 1039-1047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. F. Ziemkiewicz and Y. T. He, “Evolution of water chemistry during Marcellus shale gas development: a case study in West Virginia,” Chemosphere, 134, 224-231 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Y. Zhang, H. Liu, and G. Yan, “Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat,” Mol. Breed., 41(1), 11032 (2021).

    Article  CAS  Google Scholar 

  32. H. Biebl, M. Allgaier, H. Lunsdorf, R. Pukall, B. J. Tindall, and I. Wagner-Dobler, “Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophylla,” Int. J. Syst. Evol. Microbiol., 55, 2377-2383 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. S. Amachi, Y. Muramatsu, Y. Akiyama, K. Miyazaki, S. Yoshiki, S. Hanada, Y. Kamagata, T. Ban-nai, H. Shinoyama, and T. Fujii, “Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters,” Microb. Ecol., 49, 547-557 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clin. Microbiol. Rev., 12, 147-179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Wakai, K. Ito, T. Iino, Y. Tomoe, K. Mori, and S. Harayama, “Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility,” Microb. Ecol., 68, 519-527 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. M. A. Cluff, A. Hartsock, J. D. MacRae, K. Carter, and P. J. Mouser, “Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells,” Environ. Sci. Technol., 48, 6508-6517 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. M. V. Evans, J. Panescu, A. J. Hanson, S. A. Welch, J. M. Sheets, N. Nastasi, R. A. Daly, D. R. Cole, T. H. Darrah, M. J. Wilkins, K. C. Wrighton, and P. J. Mouser, “Members of marinobacter and arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian basin,” Front. Microb., 9, 02046 (2018).

    Article  Google Scholar 

  38. B. P. Hedlund, A. D. Geiselbrecht, and J. T. Staley, “Marinobacter strain NCE312 has a pseudomonas-like naphthalene dioxygenase,” FEMS Microbiol. Lett., 201, 47-51 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. J. O. Kim, H. J. Lee, S. I. Han, and K. S. Whang, “Marinobacter halotolerans sp nov., a halophilic bacterium isolated from a saltern crystallizing pond,” Int. J. Syst. Evol. Microbiol., 67, 460-465 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. N. Boujida, M. Palau, S. Charfi, A. Manresa, N. S. Senhaji, J. Abrini, and D. Minana-Galbis, “Marinobacter maroccanus sp. nov., a moderately halophilic bacterium isolated from a saline soil,” Int. J. Syst. Evol. Microbiol., 69, 227-234 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. M. M. Yakimov, R. Denaro, M. Genovese, S. Cappello, G. D’Auria, T. N. Chernikova, K. N. Timmis, P. N. Golyshin, and L. Giluliano, “Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons,” Environ. Microbiol., 7, 1426-1441 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. H. Kawaguchi, T. Sakuma, Y. Nakata, H. Kobayashi, K. Endo, and K. Sato, “Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs,” J. Biosci. Bioeng., 110, 106-108 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. S. Ehinger, J. Seifert, A. Kassahun, L. Schmalz, N. Hoth, and M. Schloemann, “Predominance of Methanolobus spp. and Methanoculleus spp. in the archaeal communities of saline gas field formation fluids,” Geomicrobiol. J., 26, 326-338 (2009).

    Article  CAS  Google Scholar 

  44. S. A. Hensley, J. H. Jung, C. S. Park, and J. F. Holden, “Thermococcus paralvinellae sp nov and Thermococcus cleftensis sp nov of hyperthermophilic heterotrophs from deep-sea hydrothermal vents,” Int. J. Syst. Evol. Microbiol., 64, 3655-3659 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. D. Courtine, E. Vince, L. Maignien, X. Philippon, N. Gayet, Z. Shao, and K. Alain, “Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic ridge,” Int. J. Syst. Evol. Microbiol., 71(7), 004853 (2021).

    Article  CAS  Google Scholar 

  46. A. M. Cladera, E. Garcia-Valdes, and J. Lalucat, “Genotype versus phenotype in the circumscription of bacterial species: the case of Pseudomonas stutzeri and Pseudomonas chloritidismutans,” Arch. Microbiol., 184, 353-361 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. J. Gaspar, D. Davis, C. Camacho, and P. J. J. Alvarez, “Biogenic versus Thermogenic H2S source determination in Bakken wells: considerations for biocide application,” Environ. Sci. Technol. Lett., 3, 127-132 (2016).

    Article  CAS  Google Scholar 

  48. G. A. Kahrilas, J. Blotevogel, E. R. Corrin, and T. Borch, “Downhole transformation of the hydraulic fracturing fluid biocide glutaraldehyde: implications for flowback and produced water quality,” Environ. Sci. Technol., 50, 11414-11423 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guihong Lan or Mina Luo.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 195–201 January – February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Tan, P., Zhang, J. et al. Changes of Microorganism and Corrosion Tendency During Fracturing of Flowback Fluid Recovery Wells of Shale Gas. Chem Technol Fuels Oils 58, 209–219 (2022). https://doi.org/10.1007/s10553-022-01369-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01369-5

Keywords

Navigation