Skip to main content
Log in

Influence of Coal-Seam Water on Coalbed Methane Production: A Review

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

We present a comprehensive overview of the influence of water on coalbed methane production. The influence of water on coalbed methane production is associated with adsorption of water in pores, capillary condensation, micropore filling, adsorption hysteresis and its effect on methane diffusivity, coal swelling due to adsorption of water and a corresponding change in methane permeability, pore saturation by water (water imbibition into pores), and gas–water two-phase flow in the cleats. We consider methods for reducing the negative impact of water on coalbed methane production: carbon dioxide injection and microwave technology. We identify promising areas of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Chen, Z. J. Pan, J. S. Liu, and L. D. Connell, “An improved relative permeability model for coal reservoirs,” International Journal of Coal Geology, 109–110, 45–57 (2013).

  2. J. F. Unsworth, C. S. Fowler, A. Heard, and V. L. Weldon, “Moisture in coal: 1. Differentiation between forms of moisture by n.m.r. and attenuation techniques,” Fuel, 67, No. 8, 1111–1119 (1988).

    Article  CAS  Google Scholar 

  3. E. Zimmermann, and C. Niemann-Delius, “Microwave beneficiation of brown coal,” Górnictwo I Geoinzynieria, 31, No. 2, 627–633 (2007).

    Google Scholar 

  4. D. Chen, Z. J. Pan, J. S. Liu, and L. D. Connell, “Modeling and simulation of moisture effect on gas storage and transport in coal seams,” Energy & Fuels, 26, No. 3, 1695–1706 (2012.).

    Article  CAS  Google Scholar 

  5. N. S. Kaveh, E. S. Rudolph, K. A. Wolf, and S. N. Ashrafizadeh, “Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2,” Journal of Colloid and Interface Science, 364, No. 1, 237–247 (2011).

    Article  CAS  Google Scholar 

  6. R. Sakurovs and S. Lavrencic, “Contact angles in CO2–water–coal systems at elevated pressures,” International Journal of Coal Geology, 87 (1), 26–32 (2011).

    Article  CAS  Google Scholar 

  7. S. Wong, D. Law, X. Deng, J. Robinson, B. Kadatz, W. D. Gunter, J. P. Ye, S. L. Feng, and Z. Q. Fan, “Enhanced coalbed methane and CO2 storage in anthracitic coal-micro-pilot test at South Qinshui, Shanxi, China,” International Journal of Greenhouse Gas Control, 1, No. 2, 215–222 (2007).

    Article  CAS  Google Scholar 

  8. A. Busch and Y. Gensterblum, “CBM and CO2-ECBM related sorption process in coal: A review,” International Journal of Coal Geology, 87, No. 2, 49–71 (2011).

    Article  CAS  Google Scholar 

  9. M. S. Seehra, A. Kalra, and A. Manivannan, “Dewatering of fine coal slurries by selective heating with microwave,” Fuel, 86, Nos. 5–6, 829–834 (2007).

    Article  CAS  Google Scholar 

  10. C. T. Chengquan, The Application and Research of Coal Wettability. China Coal Industry Publishing House, Beijing (1992).

    Google Scholar 

  11. B. S. Nie, X. Q. He, E. Y. Wang, and L. Zhang, “Micro-mechanism of coal adsorbing water,” Journal of China University of Mining & Technology, 33, No. 4, 380–383 (2004).

    Google Scholar 

  12. S. X. Sang, Y. M. Zhu, J. Zhang, X. D. Zhang, and S. Y. Zhang, “Experiments of the influence of water on coalbed methane adsorption: the coal reservoir in the south of Qinshui Basin,” Chinese Science Bulletin, 50, No. 1, 70–75 (2005).

    Google Scholar 

  13. S. Y. Zhang and S. X. Sang, “Influence mechanism of liquid water on methane adsorption of coals with different ranks,” Acta Geologica Sinica, 82, No. 10, 1350–1354 (2008).

    CAS  Google Scholar 

  14. Z. D. Li, Y. P. Ji, and K. P. Liu, “Experimental study of moisture on 22 coal seam gas adsorption and desorption rules,” Coal, 21, No. 5, 4–7 (2012).

    Google Scholar 

  15. P. H. Given, A. Marzec, W. A. Barton, L. J. Lynch, and B. C. Gerstein, “The concept of a mobile or molecular phase within the macromolecular network of coals: a debate,” Fuel, 65, No. 2, 155–163 (1986).

    Article  CAS  Google Scholar 

  16. N. Suarez, E. Laredo, and R. Nava, “Characterization of four hydrophilic sites in bituminous coal by ionic thermal current measurements,” Fuel, 72, No. 1, 13–18 (1993).

    Article  CAS  Google Scholar 

  17. T. Iiyama, K. Nishikawa, T. Suzuki, and K. Kaneko, “Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction,” Chemical Physics Letters, 274, Nos. 1–3, 152–158 (1997).

    Article  CAS  Google Scholar 

  18. J. Alcaniz-Mongue, A. Linares-Solano, and B. Rand, “Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers,” J. Phys. Chem., 106, No. 12, 3209–3216 (2001).

    Article  Google Scholar 

  19. J. T. Jingyi and S. C. Daxiong, Adsorption Science, Chemical Industry Press, Beijing (2010).

    Google Scholar 

  20. D. J. Allardice and D. G. Evans, “The brown coal/water system: Part 2. Water sorption isotherms on bed-moist Yallourn brown coal,” Fuel, 50, No. 3, 236–253 (1971).

    Article  CAS  Google Scholar 

  21. A. L. McCutcheon, W. A. Barton, and M. A. Wilson, “Kinetics of water adsorption/desorption on bituminous coals,” Energy & Fuels, 15, No. 6, 1387–1395 (2001).

    Article  CAS  Google Scholar 

  22. D. Charrière and P. Behra, “Water sorption on coals,” Journal of Colloid and Interface Science, 344, No. 2, 460–467 (2010).

    Article  Google Scholar 

  23. T. Horikawa, T. Sekida, J. I. Hayashi, M. Katoh, and D. D. Do, “A new adsorption-desorption model for water adsorption in porous carbons,” Carbon, 49, No. 2, 416–424 (2010).

    Article  Google Scholar 

  24. L. H. Cohan, “Hysteresis and the capillary theory of adsorption of vapors,” J. Am. Chem. Soc., 66 (1), 98–105 (1944).

    Article  CAS  Google Scholar 

  25. A. G. Foster, “Sorption hysteresis. Part II. The role of the cylindrical meniscus effect,” J. Chem. Soc. (Resumed), 1806–1812 (1952).

  26. Y. Gensterblum, A. Merkel, A. Busch, and B. M. Krooss, “High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture,” International Journal of Coal Geology,118, 45–57 (2013).

    Article  CAS  Google Scholar 

  27. S. Day, R. Sakurovs, and S. Weir, “Supercritical gas sorption on moist coals,” International Journal of Coal Geology, 74, Nos. 3–4, 203–214 (2008).

    Article  CAS  Google Scholar 

  28. E. Ozdemir and K. Schroeder, “Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals,” Energy & Fuels, 23, No. 5, 2821–2831 (2009).

    Article  CAS  Google Scholar 

  29. T. A. Moore, “Coalbed methane: A review,” International Journal of Coal Geology, 101, 36–81 (2012).

    Article  CAS  Google Scholar 

  30. P. Grathwohl, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, Kluwer Academic, Portland (1998).

    Book  Google Scholar 

  31. Z. J. Pan, L. D. Connell, M. Camilleri, and L. Connelly, “Effects of matrix moisture on gas diffusion and flow in coal,” Fuel, 89, No. 11, 3207–3217 (2010).

    Article  CAS  Google Scholar 

  32. H. Xu, D. Z. Tang, S. H. Tang, J. L. Zhao, Y. J. Meng, and S. Tao, “A dynamic prediction model for gas-water effective permeability based on coalbed methane production data,” International Journal of Coal Geology, 121, 44–52 (2014).

    Article  CAS  Google Scholar 

  33. X. H. Fu and Y. Qin, Theories and Techniques of Permeability Prediction of Multiphase Medium Coalbed Methane Reservoirs, China University of Mining and Technology Press, Xuzhou (2003).

    Google Scholar 

  34. J. Shen, Y. Qin, G. X. Wang, X. H. Fu, C. T. Wei, and B. Lei, “Relative permeabilities of gas and water for different rank coals,” International Journal of Coal Geology, 86, Nos. 2–3, 266–275 (2011).

    Article  CAS  Google Scholar 

  35. S. G. Wang, D. Elsworth, and J. S. Liu, “Permeability evolution in fractured coal: The roles of fracture geometry and water-content,” International Journal of Coal Geology, 87, No. 1, 13–25 (2011).

    Article  CAS  Google Scholar 

  36. G. Z. Yin, C. B. Jiang, J. Xu, and G. Huang, The Coupling Mechanism and Experimental Study of Solid–liquid-Gas in the Process of Deep Coal and Methane Exploitation, Science Press, Beijing (2012).

    Google Scholar 

  37. Y. J Xu and D. H. Tu, “Capillary wettability of coal seam water injection,” Hebei Coal, No. 3, 20–23 (1996).

  38. E. W. Washburn, “The dynamics of capillary flow,” Physical Review, 17, 273–283 (1921).

    Article  Google Scholar 

  39. M. K. Dabbous, A. A. Reznik, J. J. Taber, and P. F. Fulton, “The permeability of coal to gas and water,” Society of Petroleum Engineers Journal, 257, 563–572 (1974).

    Article  Google Scholar 

  40. A. A. Reznik, M. K. Dabbous, P. F. Fulton, and J. J. Taber, “Air-water relative permeability studies of Pittsburgh and Pocahontas coals,” Society of Petroleum Engineers Journal, 257, 556–562 (1974).

    Article  Google Scholar 

  41. K. Meaney and L. Paterson, “Relative permeability in coal,” in: SPE Asia Pacific Oil & Gas Conference, 28–31 October 1996, Adelaide, Australia (1996); SPE 36986.

  42. S. Durucan, M. Ahsan, A. Syed, J. Q. Shi, and A. Korre, “Two phase relative permeability of gas and water in coal for enhanced coalbed methane recovery and CO2 storage,” Energy Procedia, 37, 6730–6737 (2013).

    Article  CAS  Google Scholar 

  43. D. Chen, J. Q. Shi, S. Durucan, and A. Korre, “Gas and water relative permeability in different coals: Model match and new sights,” International Journal of Coal Geology, 122, 37–49 (2014).

    Article  CAS  Google Scholar 

  44. S. E. Laubach, R. A. Marrett, J. E. Olson, and A. R. Scott, “Characteristic and origins of coal cleat: a review,” International Journal of Coal Geology, 35, 175–207 (1998).

    Article  CAS  Google Scholar 

  45. L. Hao and B. Y. Duan, “The impact of water in coal seam on CBM yield,” China Coalbed Methane, No. 4, 32–34 (2012).

  46. B. G. Kutchko, A. L. Goodman, E. Rosenbaum, S. Natesakhawat, and K. Wagner, “Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy,” Fuel, 107, 777–786 (2013).

    Article  CAS  Google Scholar 

  47. R. Shukla, P. Ranjith, A. Haque, and X. Choi, “A review of studies on CO2 sequestration and caprock integrity,” Fuel, 89, No. 10, 2651–2664 (2010).

    Article  CAS  Google Scholar 

  48. M. S. A. Perera, P. G. Ranjith, S. K. Choi, and D. Airey, “Investigation of temperature effect on permeability of naturally fractured black coal for carbon dioxide movement: An experimental and numerical study,” Fuel, 94, 596–605 (2012).

    Article  CAS  Google Scholar 

  49. V. Vishal, P. G. Ranjith, S. P. Pradhan, and T. N. Singh, “Permeability of sub-critical carbon dioxide in naturally fractured Indian bituminous coal at a range of down-hole stress conditions,” Engineering Geology, 167, 148–156 (2013).

    Article  Google Scholar 

  50. S. M. Chi, B. I. Morsi, G. E. Klinzing, and S. H. Chiang, “Study of interfacial properties in the liquid CO2-water-coal system,” Energy & Fuels, 2, No. 1, 141–145 (1988).

    Article  CAS  Google Scholar 

  51. N. Siemons, H. Bruining, H. Castelijns, and K. A. Wolf, “Pressure dependence of the contact angle in a CO2-H2O-coal system,” Journal of Colloid and Interface Science, 297, No. 2, 755–761 (2006).

    Article  CAS  Google Scholar 

  52. T. Chaturvedi, J. M. Schembre, and A. R. Kovscek, “Spontaneous imbibition and wettability characteristics of Powder River Basin coal,” International Journal of Coal Geology, 77, No. 1–2, 34–42 (2009).

    Article  CAS  Google Scholar 

  53. D. P. Lindroth, “Microwave drying of fine coal,” US Bureau of Mines Report #9005, US Department of the Interior (1986).

  54. S. Marland, B. Han, A. Merchant, and N. Rowson, “The effect of microwave radiation on coal grindability,” Fuel, 79, No. 11, 1283–1288 (2000).

    Article  CAS  Google Scholar 

  55. E. Lester and S. Kingman, “The effect of microwave preheating on five different coals,” Fuel, 83, 3–17 (2004).

    Article  Google Scholar 

  56. J. Graham and K. Boddeus, “Microwave pretreatment of coal prior to milling,” in: Tenth Australian Coal Science Conference, Brisbane, Queensland (2013).

Download references

This work was done with the support of the key national project in the area of science and technology (2011ZX05042-002-001), the special fund of the central government supporting development of regional universities and the open fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (PLN1208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxuan Han.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 44 – 51, March– April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Yang, Z., Li, X. et al. Influence of Coal-Seam Water on Coalbed Methane Production: A Review. Chem Technol Fuels Oils 51, 207–221 (2015). https://doi.org/10.1007/s10553-015-0594-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-015-0594-9

Key words

Navigation