Skip to main content

Advertisement

Log in

Association of oral microbiota with lung cancer risk in a low-income population in the Southeastern USA

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Oral microbiome plays an important role in oral health and systemic diseases, including cancer. We aimed to prospectively investigate the association of oral microbiome with lung cancer risk.

Methods

We analyzed 156 incident lung cancer cases (73 European Americans and 83 African Americans) and 156 individually matched controls nested within the Southern Community Cohort Study. Oral microbiota were assessed using 16S rRNA gene sequencing in pre-diagnostic mouth rinse samples. Paired t test and the permutational multivariate analysis of variance test were used to evaluate lung cancer risk association with alpha diversity or beta diversity, respectively. Conditional logistic regression models were used to evaluate the association of individual bacterial abundance or prevalence with lung cancer risk.

Results

No significant differences were observed for alpha or beta diversity between lung cancer cases and controls. Abundance of families Lachnospiraceae_[XIV], Peptostreptococcaceae_[XI], and Erysipelotrichaceae and species Parvimonas micra was associated with decreased lung cancer risk, with odds ratios (ORs) and 95% confidence intervals (CIs) of 0.76 (0.59–0.98), 0.80 (0.66–0.97), 0.81 (0.67–0.99), and 0.83 (0.71–0.98), respectively (all p < 0.05). Prevalence of five pre-defined oral pathogens were not significantly associated with overall lung cancer risk. Prevalence of genus Bacteroidetes_[G-5] and species Alloprevotella sp._oral_taxon_912, Capnocytophaga sputigena, Lactococcus lactis, Peptoniphilaceae_[G-1] sp._oral_taxon_113, Leptotrichia sp._oral_taxon_225, and Fretibacterium fastidiosum was associated with decreased lung cancer risk, with ORs and 95% CIs of 0.55 (0.30–1.00), 0.36 (0.17–0.73), 0.53 (0.31–0.92), 0.43 (0.21–0.88), 0.43 (0.19–0.94), 0.57 (0.34–0.99), and 0.54 (0.31–0.94), respectively (all p < 0.05). Species L. sp._oral_taxon_225 was significantly associated with decreased lung cancer risk in African Americans (OR [95% CIs] 0.28 [0.12–0.66]; p = 0.00012).

Conclusion

Results from this study suggest that oral microbiota may play a role in the development of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data and statistical codes used in the present study can be requested through the SCCS Online request System (https://ors.southerncommunitystudy.org).

References

  1. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Ezzati M, Lopez AD (2003) Estimates of global mortality attributable to smoking in 2000. Lancet Lond Engl 362:847–852. https://doi.org/10.1016/S0140-6736(03)14338-3

    Article  Google Scholar 

  4. Ezzati M, Henley SJ, Lopez AD, Thun MJ (2005) Role of smoking in global and regional cancer epidemiology: current patterns and data needs. Int J Cancer 116:963–971. https://doi.org/10.1002/ijc.21100

    Article  CAS  PubMed  Google Scholar 

  5. Sharma N, Bhatia S, Sodhi AS, Batra N (2018) Oral microbiome and health. AIMS Microbiol 4:42–66. https://doi.org/10.3934/microbiol.2018.1.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verma D, Garg PK, Dubey AK (2018) Insights into the human oral microbiome. Arch Microbiol 200:525–540. https://doi.org/10.1007/s00203-018-1505-3

    Article  CAS  PubMed  Google Scholar 

  7. Willis JR, Gabaldón T (2020) The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms. https://doi.org/10.3390/microorganisms8020308

    Article  PubMed  PubMed Central  Google Scholar 

  8. Irfan M, Delgado RZR, Frias-Lopez J (2020) The oral microbiome and cancer. Front Immunol 11:591088. https://doi.org/10.3389/fimmu.2020.591088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuominen H, Rautava J (2021) Oral microbiota and cancer development. Pathobiol J Immunopathol Mol Cell Biol 88:116–126. https://doi.org/10.1159/000510979

    Article  CAS  Google Scholar 

  10. Hiraki A, Matsuo K, Suzuki T et al (2008) Teeth loss and risk of cancer at 14 common sites in Japanese. Cancer Epidemiol Biomarkers Prev 17:1222–1227. https://doi.org/10.1158/1055-9965.EPI-07-2761

    Article  PubMed  Google Scholar 

  11. Chung M, York BR, Michaud DS (2019) Oral health and cancer. Curr Oral Health Rep 6:130–137. https://doi.org/10.1007/s40496-019-0213-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoon H-S, Wen W, Long J et al (2019) Association of oral health with lung cancer risk in a low-income population of African Americans and European Americans in the Southeastern United States. Lung Cancer Amst Neth 127:90–95. https://doi.org/10.1016/j.lungcan.2018.11.028

    Article  Google Scholar 

  13. Sampaio-Maia B, Caldas IM, Pereira ML et al (2016) The oral microbiome in health and its implication in oral and systemic diseases. Adv Appl Microbiol 97:171–210. https://doi.org/10.1016/bs.aambs.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Brenner DR, McLaughlin JR, Hung RJ (2011) Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One 6:e17479. https://doi.org/10.1371/journal.pone.0017479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhan P, Suo L, Qian Q et al (2011) Chlamydia pneumoniae infection and lung cancer risk: a meta-analysis. Eur J Cancer 47:742–747. https://doi.org/10.1016/j.ejca.2010.11.003

    Article  PubMed  Google Scholar 

  16. Hua-Feng X, Yue-Ming W, Hong L, Junyi D (2015) A meta-analysis of the association between Chlamydia pneumoniae infection and lung cancer risk. Indian J Cancer 52(Suppl 2):e112-115. https://doi.org/10.4103/0019-509X.172506

    Article  PubMed  Google Scholar 

  17. Hosgood HD, Sapkota AR, Rothman N et al (2014) The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen 55:643–651. https://doi.org/10.1002/em.21878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan X, Yang M, Liu J et al (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5:3111–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang J, Mu X, Wang Y et al (2018) Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Front Oncol 8:520. https://doi.org/10.3389/fonc.2018.00520

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hosgood HD, Cai Q, Hua X et al (2021) Variation in oral microbiome is associated with future risk of lung cancer among never-smokers. Thorax 76:256–263. https://doi.org/10.1136/thoraxjnl-2020-215542

    Article  PubMed  Google Scholar 

  21. Signorello LB, Hargreaves MK, Steinwandel MD et al (2005) Southern community cohort study: establishing a cohort to investigate health disparities. J Natl Med Assoc 97:972–979

    PubMed  PubMed Central  Google Scholar 

  22. Long J, Cai Q, Steinwandel M et al (2017) Association of oral microbiome with type 2 diabetes risk. J Periodontal Res 52:636–643. https://doi.org/10.1111/jre.12432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joshi N, Fass J (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle

  26. Nikolenko SI, Korobeynikov AI, Alekseyev MA (2013) BayesHammer: bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl 1):S7. https://doi.org/10.1186/1471-2164-14-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Masella AP, Bartram AK, Truszkowski JM et al (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31. https://doi.org/10.1186/1471-2105-13-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schirmer M, Ijaz UZ, D’Amore R et al (2015) Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 43:e37. https://doi.org/10.1093/nar/gku1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dewhirst FE, Chen T, Izard J et al (2010) The human oral microbiome. J Bacteriol 192:5002–5017. https://doi.org/10.1128/JB.00542-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang Z-Z, Chen G, Alekseyenko AV (2016) PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances. Bioinformatics 32:2618–2625. https://doi.org/10.1093/bioinformatics/btw311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandes AD, Reid JN, Macklaim JM et al (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. https://doi.org/10.1186/2049-2618-2-15

    Article  PubMed  PubMed Central  Google Scholar 

  32. Holt SC (2000) Ebersole JL (2005) Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 38:72–122. https://doi.org/10.1111/j.1600-0757.2005.00113.x

    Article  Google Scholar 

  33. Cullinan MP, Hamlet SM, Westerman B et al (2003) Acquisition and loss of porphyromonas gingivalis, actinobacillus actinomycetemcomitans and prevotella intermedia over a 5-year period: effect of a triclosan/copolymer dentifrice. J Clin Periodontol 30:532–541

    Article  CAS  PubMed  Google Scholar 

  34. Yu D, Sonderman J, Buchowski MS et al (2015) Healthy eating and risks of total and cause-specific death among low-income populations of african-americans and other adults in the southeastern United States: a prospective cohort study. PLoS Med 12:e1001830. https://doi.org/10.1371/journal.pmed.1001830

    Article  PubMed  PubMed Central  Google Scholar 

  35. Galwey NW (2009) A new measure of the effective number of tests, a practical tool for comparing families of non-independent significance tests. Genet Epidemiol 33:559–568. https://doi.org/10.1002/gepi.20408

    Article  PubMed  Google Scholar 

  36. Cinar O, Viechtbauer W (2016) poolr: package for pooling the results from (dependent) tests. https://ozancinar.github.io/poolr/

  37. Yang Y, Zheng W, Cai Q-Y et al (2019) Cigarette smoking and oral microbiota in low-income and African-American populations. J Epidemiol Community Health 73:1108–1115. https://doi.org/10.1136/jech-2019-212474

    Article  PubMed  Google Scholar 

  38. Wu J, Peters BA, Dominianni C et al (2016) Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 10:2435–2446. https://doi.org/10.1038/ismej.2016.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang C, Shi G (2019) Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 17:225. https://doi.org/10.1186/s12967-019-1971-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Delima SL, McBride RK, Preshaw PM et al (2010) Response of subgingival bacteria to smoking cessation. J Clin Microbiol 48:2344–2349. https://doi.org/10.1128/JCM.01821-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shchipkova AY, Nagaraja HN, Kumar PS (2010) Subgingival microbial profiles of smokers with periodontitis. J Dent Res 89:1247–1253. https://doi.org/10.1177/0022034510377203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belstrøm D, Fiehn N-E, Nielsen CH et al (2015) Differentiation of salivary bacterial profiles of subjects with periodontitis and dental caries. J Oral Microbiol 7:27429. https://doi.org/10.3402/jom.v7.27429

    Article  PubMed  Google Scholar 

  43. Zhang Y, Song P, Zhang R et al (2021) Clinical characteristics of chronic lung abscess associated with parvimonas micra diagnosed using metagenomic next-generation sequencing. Infect Drug Resist 14:1191–1198. https://doi.org/10.2147/IDR.S304569

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee W-H, Chen H-M, Yang S-F et al (2017) Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep 7:16540. https://doi.org/10.1038/s41598-017-16418-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang C-Y, Yeh Y-M, Yu H-Y et al (2018) Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol 9:862. https://doi.org/10.3389/fmicb.2018.00862

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao H, Chu M, Huang Z et al (2017) Variations in oral microbiota associated with oral cancer. Sci Rep 7:11773. https://doi.org/10.1038/s41598-017-11779-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flemer B, Warren RD, Barrett MP et al (2018) The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67:1454–1463. https://doi.org/10.1136/gutjnl-2017-314814

    Article  CAS  PubMed  Google Scholar 

  48. Al-Hebshi NN, Baraniya D, Chen T et al (2019) Metagenome sequencing-based strain-level and functional characterization of supragingival microbiome associated with dental caries in children. J Oral Microbiol 11:1557986. https://doi.org/10.1080/20002297.2018.1557986

    Article  CAS  PubMed  Google Scholar 

  49. Fan X, Alekseyenko AV, Wu J et al (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67:120–127. https://doi.org/10.1136/gutjnl-2016-312580

    Article  CAS  PubMed  Google Scholar 

  50. Li D, Xi W, Zhang Z et al (2020) Oral microbial community analysis of the patients in the progression of liver cancer. Microb Pathog 149:104479. https://doi.org/10.1016/j.micpath.2020.104479

    Article  CAS  PubMed  Google Scholar 

  51. Sun Y, Shu R, Li C-L, Zhang M-Z (2010) Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells. J Periodontol 81:1488–1496. https://doi.org/10.1902/jop.2010.100004

    Article  CAS  PubMed  Google Scholar 

  52. Elinav E, Nowarski R, Thaiss CA et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771. https://doi.org/10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  53. Sheflin AM, Whitney AK, Weir TL (2014) Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 16:406. https://doi.org/10.1007/s11912-014-0406-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dajon M, Iribarren K, Cremer I (2017) Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword. Immunobiology 222:89–100. https://doi.org/10.1016/j.imbio.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  55. Ranjan R, Rani A, Metwally A et al (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977. https://doi.org/10.1016/j.bbrc.2015.12.083

    Article  CAS  PubMed  Google Scholar 

  56. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all individuals who took part in the study and all researchers, clinicians, technicians, and administrative staff who enabled this work to be carried out. We thank Dr. Mary Shannon Byers for assistance with manuscript preparation.

Funding

This study was supported by the National Institutes of Health (R01CA207466, R01CA92447, U01CA202979, and U54CA163072). Sample preparation was conducted at the Survey and Biospecimen Shared Resources, which is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). The 16S rRNA gene sequencing was performed at the VANderbilt Technologies for Advanced Genomics (VANTAGE) Core, which is partly supported by NIH/NCRR grant G20 RR030956. The data analyses were conducted using the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University, which is supported in part by the National Institutes of Health S10 Shared Instrumentation (1S10OD023680). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WZ, WJB, and QC conceived the study. JS, YY, and JL analyzed the data and drafted the manuscript. HX, XW, JW, RC, XOS, WZ, WJB, and QC contributed resources, collected, and processed samples. All the authors edited and approved the final draft.

Corresponding author

Correspondence to Qiuyin Cai.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Ethical approval

The Southern Community Cohort Study was reviewed and approved by the institutional review boards at Vanderbilt University and Meharry Medical College.

Consent to participate

Written informed consent was obtained from all individuals, and the research was performed by the principles of the Helsinki Declaration.

Patient consent for publication

All study participants provided written informed consent for the publication of any data and associated images.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Yang, Y., Xie, H. et al. Association of oral microbiota with lung cancer risk in a low-income population in the Southeastern USA. Cancer Causes Control 32, 1423–1432 (2021). https://doi.org/10.1007/s10552-021-01490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-021-01490-6

Keywords

Navigation