Skip to main content

Advertisement

Log in

Predictive analysis of breast cancer response to neoadjuvant chemotherapy through plasma metabolomics

  • Research
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Preoperative chemotherapy is a critical component of breast cancer management, yet its effectiveness is not uniform. Moreover, the adverse effects associated with chemotherapy necessitate the identification of a patient subgroup that would derive the maximum benefit from this treatment. This study aimed to establish a method for predicting the response to neoadjuvant chemotherapy in breast cancer patients utilizing a metabolomic approach.

Methods

Plasma samples were obtained from 87 breast cancer patients undergoing neoadjuvant chemotherapy at our facility, collected both before the commencement of the treatment and before the second treatment cycle. Metabolite analysis was conducted using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry (LC–MS). We performed comparative profiling of metabolite concentrations by assessing the metabolite profiles of patients who achieved a pathological complete response (pCR) against those who did not, both in initial and subsequent treatment cycles.

Results

Significant variances were observed in the metabolite profiles between pCR and non-pCR cases, both at the onset of preoperative chemotherapy and before the second cycle. Noteworthy distinctions were also evident between the metabolite profiles from the initial and the second neoadjuvant chemotherapy courses. Furthermore, metabolite profiles exhibited variations associated with intrinsic subtypes at all assessed time points.

Conclusion

The application of plasma metabolomics, utilizing CE-MS and LC–MS, may serve as a tool for predicting the efficacy of neoadjuvant chemotherapy in breast cancer in the future after all necessary validations have been completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly accessible due to privacy considerations. However, they can be made available by the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M, Hudis C, Gray JW, Perou C, Yau C, Livasy C, Krontiras H, Montgomery L, Tripathy D, Lehman C, Liu MC, Olopade OI, Rugo HS, Carpenter JT, Dressler L, Chhieng D, Singh B, Mies C, Rabban J, Chen YY (2012) Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL–CALGB 150007/150012, ACRIN 6657. J Clin Oncol 30(26):3242–3249. https://doi.org/10.1200/JCO.2011.39.2779

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, Panel M (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747. https://doi.org/10.1093/annonc/mdr304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Hurvitz SA, Isakoff SJ, Jankowitz RC, Javid SH, Krishnamurthy J, Leitch M, Lyons J, Mortimer J, Patel SA, Pierce LJ, Rosenberger LH, Rugo HS, Sitapati A, Smith KL, Smith ML, Soliman H, Stringer-Reasor EM, Telli ML, Ward JH, Wisinski KB, Young JS, Burns J, Kumar R (2022) Breast cancer, version 3 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 20(6):691–722. https://doi.org/10.6004/jnccn.2022.0030

    Article  PubMed  Google Scholar 

  5. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Konecny GE, Denkert C, Nekljudova V, Mehta K, Loibl S (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30(15):1796–1804. https://doi.org/10.1200/JCO.2011.38.8595

    Article  Google Scholar 

  6. Asaoka M, Narui K, Suganuma N, Chishima T, Yamada A, Sugae S, Kawai S, Uenaka N, Teraoka S, Miyahara K, Kawate T, Sato E, Nagao T, Matsubara Y, Gandhi S, Takabe K, Ishikawa T (2019) Clinical and pathological predictors of recurrence in breast cancer patients achieving pathological complete response to neoadjuvant chemotherapy. Eur J Surg Oncol 45(12):2289–2294. https://doi.org/10.1016/j.ejso.2019.08.001

    Article  PubMed  Google Scholar 

  7. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National surgical adjuvant breast and bowel project B-18. J Natl Cancer Inst Monogr 30:96–102. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003469

    Article  Google Scholar 

  8. Chen R, Ye Y, Yang C, Peng Y, Zong B, Qu F, Tang Z, Wang Y, Su X, Li H, Yang G, Liu S (2018) Assessment of the predictive role of pretreatment Ki-67 and Ki-67 changes in breast cancer patients receiving neoadjuvant chemotherapy according to the molecular classification: a retrospective study of 1010 patients. Breast Cancer Res Treat 170(1):35–43. https://doi.org/10.1007/s10549-018-4730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K (2014) The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PLoS ONE 9(12):e115103. https://doi.org/10.1371/journal.pone.0115103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, Vrancken Peeters MJ, van Tinteren H, Van’t Veer LJ, Rodenhuis S (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119(3):551–558. https://doi.org/10.1007/s10549-009-0333-1

    Article  PubMed  Google Scholar 

  11. Plimack ER, Dunbrack RL, Brennan TA, Andrake MD, Zhou Y, Serebriiskii IG, Slifker M, Alpaugh K, Dulaimi E, Palma N, Hoffman-Censits J, Bilusic M, Wong YN, Kutikov A, Viterbo R, Greenberg RE, Chen DY, Lallas CD, Trabulsi EJ, Yelensky R, McConkey DJ, Miller VA, Golemis EA, Ross EA (2015) Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol 68(6):959–967. https://doi.org/10.1016/j.eururo.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K (2020) The E2F pathway score as a predictive biomarker of response to neoadjuvant therapy in ER+/HER2—breast cancer. Cells. https://doi.org/10.3390/cells9071643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruan X, Wang Y, Zhou L, Zheng Q, Hao H, He D (2022) Evaluation of untargeted metabolomic strategy for the discovery of biomarker of breast cancer. Front Pharmacol 13:894099. https://doi.org/10.3389/fphar.2022.894099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao C, Wang M, Li L, Tang JH (2022) Circulating metabolites serve as diagnostic biomarkers for HER2-positive breast cancer and have predictive value for trastuzumab therapy outcomes. J Clin Lab Anal 36(2):e24212. https://doi.org/10.1002/jcla.24212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diaz C, Gonzalez-Olmedo C, Diaz-Beltran L, Camacho J, Mena Garcia P, Martin-Blazquez A, Fernandez-Navarro M, Ortega-Granados AL, Galvez-Montosa F, Marchal JA, Vicente F, Perez Del Palacio J, Sanchez-Rovira P (2022) Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach. Mol Oncol 16(14):2658–2671. https://doi.org/10.1002/1878-0261.13216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lo C, Hsu YL, Cheng CN, Lin CH, Kuo HC, Huang CS, Kuo CH (2020) Investigating the association of the biogenic amine profile in urine with therapeutic response to neoadjuvant chemotherapy in breast cancer patients. J Proteome Res 19(10):4061–4070. https://doi.org/10.1021/acs.jproteome.0c00362

    Article  CAS  PubMed  Google Scholar 

  17. von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W, Gerber B, Hanusch C, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Kummel S, Paepke S, Schneeweiss A, Untch M, Zahm DM, Mehta K, Loibl S (2013) Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 31(29):3623–3630. https://doi.org/10.1200/JCO.2012.45.0940

    Article  CAS  Google Scholar 

  18. Varadan V, Kamalakaran S, Gilmore H, Banerjee N, Janevski A, Miskimen KL, Williams N, Basavanhalli A, Madabhushi A, Lezon-Geyda K, Bossuyt V, Lannin DR, Abu-Khalaf M, Sikov W, Dimitrova N, Harris LN (2016) Brief-exposure to preoperative bevacizumab reveals a TGF-beta signature predictive of response in HER2-negative breast cancers. Int J Cancer 138(3):747–757. https://doi.org/10.1002/ijc.29808

    Article  CAS  PubMed  Google Scholar 

  19. Debik J, Euceda LR, Lundgren S, Gythfeldt HVL, Garred O, Borgen E, Engebraaten O, Bathen TF, Giskeodegard GF (2019) Assessing treatment response and prognosis by serum and tissue metabolomics in breast cancer patients. J Proteome Res 18(10):3649–3660. https://doi.org/10.1021/acs.jproteome.9b00316

    Article  CAS  PubMed  Google Scholar 

  20. Brierley JD, Gospodarowicz MK, Wittekind C (2017) TNM classification of malignant tumours. John Wiley & Sons, Hoboken

    Google Scholar 

  21. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel M (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 24(9):2206–2223. https://doi.org/10.1093/annonc/mdt303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwamoto H, Okihara M, Akashi I, Kihara Y, Konno O, Kawachi S, Sunamura M, Sugimoto M (2022) Metabolomic profiling of plasma, urine, and saliva of kidney transplantation recipients. Int J Mol Sci. https://doi.org/10.3390/ijms232213938

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nakajima T, Katsumata K, Kuwabara H, Soya R, Enomoto M, Ishizaki T, Tsuchida A, Mori M, Hiwatari K, Soga T, Tomita M, Sugimoto M (2018) Urinary polyamine biomarker panels with machine-learning differentiated colorectal cancers, benign disease, and healthy controls. Int J Mol Sci. https://doi.org/10.3390/ijms19030756

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6(1):78–95. https://doi.org/10.1007/s11306-009-0178-y

    Article  CAS  PubMed  Google Scholar 

  25. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform 7(1):96–108. https://doi.org/10.2174/157489312799304431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei S, Liu L, Zhang J, Bowers J, Gowda GA, Seeger H, Fehm T, Neubauer HJ, Vogel U, Clare SE, Raftery D (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7(3):297–307. https://doi.org/10.1016/j.molonc.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  27. Irajizad E, Wu R, Vykoukal J, Murage E, Spencer R, Dennison JB, Moulder S, Ravenberg E, Lim B, Litton J, Tripathym D, Valero V, Damodaran S, Rauch GM, Adrada B, Candelaria R, White JB, Brewster A, Arun B, Long JP, Do KA, Hanash S, Fahrmann JF (2022) Application of artificial intelligence to plasma metabolomics profiles to predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Front Artif Intell 5:876100. https://doi.org/10.3389/frai.2022.876100

    Article  PubMed  PubMed Central  Google Scholar 

  28. He X, Gu J, Zou D, Yang H, Zhang Y, Ding Y, Teng L (2021) NMR-based metabolomics analysis predicts response to neoadjuvant chemotherapy for triple-negative breast cancer. Front Mol Biosci 8:708052. https://doi.org/10.3389/fmolb.2021.708052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sari Z, Miko E, Kovacs T, Boratko A, Ujlaki G, Janko L, Kiss B, Uray K, Bai P (2020) Indoxylsulfate, a metabolite of the microbiome has cytostatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers. https://doi.org/10.3390/cancers12102915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong Y, Ji P, Yang YS, Xie S, Yu TJ, Xiao Y, Jin ML, Ma D, Guo LW, Pei YC, Chai WJ, Li DQ, Bai F, Bertucci F, Hu X, Jiang YZ, Shao ZM (2021) Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab 33(1):51–64. https://doi.org/10.1016/j.cmet.2020.10.012

    Article  CAS  PubMed  Google Scholar 

  31. Abdul Kader S, Dib S, Achkar IW, Thareja G, Suhre K, Rafii A, Halama A (2022) Defining the landscape of metabolic dysregulations in cancer metastasis. Clin Exp Metastasis 39(2):345–362. https://doi.org/10.1007/s10585-021-10140-9

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Zhu Z, Yan H, Wang W, Wu Z, Zhang F, Zhang Q, Shi G, Du J, Cai H, Zhang X, Hsu D, Gao P, Piao HL, Chen G, Bu P (2021) Creatine promotes cancer metastasis through activation of Smad2/3. Cell Metab 33(6):1111–1123. https://doi.org/10.1016/j.cmet.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  33. Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, Turgeon MO, Fish L, Erard N, Gable AL, Maceli AR, Dickopf S, Papachristou EK, D’Santos CS, Carey LA, Wilkinson JE, Harrell JC, Perou CM, Goodarzi H, Poulogiannis G, Hannon GJ (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554(7692):378–381. https://doi.org/10.1038/nature25465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poschke I, Mao Y, Kiessling R, de Boniface J (2013) Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J Transl Med 11:290. https://doi.org/10.1186/1479-5876-11-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GA, Owusu-Sarfo K, Ballas RA, Raftery D (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70(21):8309–8318. https://doi.org/10.1158/0008-5472.CAN-10-1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardoso MR, Silva AAR, Talarico MCR, Sanches PHG, Sforca ML, Rocco SA, Rezende LM, Quintero M, Costa T, Viana LR, Canevarolo RR, Ferracini AC, Ramalho S, Gutierrez JM, Guimaraes F, Tasic L, Tata A, Sarian LO, Cheng LL, Porcari AM, Derchain SFM (2022) Metabolomics by NMR combined with machine learning to predict neoadjuvant chemotherapy response for breast cancer. Cancers. https://doi.org/10.3390/cancers14205055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lind DS (2004) Arginine and cancer. J Nutr 134(10 Suppl):2837S-2841S. https://doi.org/10.1093/jn/134.10.2837S

    Article  CAS  PubMed  Google Scholar 

  38. Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198. https://doi.org/10.1016/j.tibs.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santaliz-Casiano A, Mehta D, Danciu OC, Patel H, Banks L, Zaidi A, Buckley J, Rauscher GH, Schulte L, Weller LR, Taiym D, Liko-Hazizi E, Pulliam N, Friedewald SM, Khan S, Kim JJ, Gradishar W, Hegerty S, Frasor J, Hoskins KF, Madak-Erdogan Z (2023) Identification of metabolic pathways contributing to ER(+) breast cancer disparities using a machine-learning pipeline. Sci Rep 13(1):12136. https://doi.org/10.1038/s41598-023-39215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ni Y, Xie G, Jia W (2014) Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res 13(9):3857–3870. https://doi.org/10.1021/pr500443c

    Article  CAS  PubMed  Google Scholar 

  41. Zand B, Previs RA, Zacharias NM, Rupaimoole R, Mitamura T, Nagaraja AS, Guindani M, Dalton HJ, Yang L, Baddour J, Achreja A, Hu W, Pecot CV, Ivan C, Wu SY, McCullough CR, Gharpure KM, Shoshan E, Pradeep S, Mangala LS, Rodriguez-Aguayo C, Wang Y, Nick AM, Davies MA, Armaiz-Pena G, Liu J, Lutgendorf SK, Baggerly KA, Eli MB, Lopez-Berestein G, Nagrath D, Bhattacharya PK, Sood AK (2016) Role of Increased n-acetylaspartate levels in cancer. J Natl Cancer Inst 108(6):dvj426. https://doi.org/10.1093/jnci/djv426

    Article  CAS  Google Scholar 

  42. Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP (2016) Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 4:11. https://doi.org/10.1186/s40170-016-0151-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Zhou Y, Liu H, Ma M, Wang F, Liu C, Yuan Q, Wang H, Hou X, Yin P (2022) Metabolic reprogramming enables the auxiliary diagnosis of breast cancer by automated breast volume scanner. Front Oncol 12:939606. https://doi.org/10.3389/fonc.2022.939606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Persson L, Rosengren E (1989) Increased formation of N1-acetylspermidine in human breast cancer. Cancer Lett 45(2):83–86. https://doi.org/10.1016/0304-3835(89)90140-7

    Article  CAS  PubMed  Google Scholar 

  46. Kingsnorth AN, Wallace HM, Bundred NJ, Dixon JM (1984) Polyamines in breast cancer. Br J Surg 71(5):352–356. https://doi.org/10.1002/bjs.1800710513

    Article  CAS  PubMed  Google Scholar 

  47. Baranovicova E, Racay P, Zubor P, Smolar M, Kudelova E, Halasova E, Dvorska D, Dankova Z (2022) Circulating metabolites in the early stage of breast cancer were not related to cancer stage or subtypes but associated with ki67 level Promising statistical discrimination from controls. Mol Cell Probes 66:101862. https://doi.org/10.1016/j.mcp.2022.101862

    Article  CAS  PubMed  Google Scholar 

  48. Cao MD, Giskeodegard GF, Bathen TF, Sitter B, Bofin A, Lonning PE, Lundgren S, Gribbestad IS (2012) Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 12:39. https://doi.org/10.1186/1471-2407-12-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan Z, Zou Y, Zhu M, Luo Z, Wu T, Zheng C, Xie A, Wang H, Fang S, Liu S, Li Y, Lu Z (2021) Carnitine palmitoyl transferase 1A is a novel diagnostic and predictive biomarker for breast cancer. BMC Cancer 21(1):409. https://doi.org/10.1186/s12885-021-08134-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, Zhou Y, Qian M, Niu C, Hu X, Li DQ, Liu Q, Wen Y, Jiang YZ, Zhao C, Shao ZM (2022) The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab 34(4):581–594. https://doi.org/10.1016/j.cmet.2022.02.010

    Article  CAS  PubMed  Google Scholar 

  51. Takamori S, Ishikawa S, Suzuki J, Oizumi H, Uchida T, Ueda S, Edamatsu K, Iino M, Sugimoto M (2022) Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: a preliminary study. Thorac Cancer 13(3):460–465. https://doi.org/10.1111/1759-7714.14282

    Article  CAS  PubMed  Google Scholar 

  52. Eniafe J, Jiang S (2021) The functional roles of TCA cycle metabolites in cancer. Oncogene 40(19):3351–3363. https://doi.org/10.1038/s41388-020-01639-8

    Article  CAS  PubMed  Google Scholar 

  53. Chen Z, Li Z, Li H, Jiang Y (2019) Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther 12:6797–6811. https://doi.org/10.2147/OTT.S215628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study received financial support from KAKENHI (JP21K08676 and JP18K08602).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Miki Yamada, Hiromitsu Jinno. methodology: Masahiro Sugimoto. formal analysis and investigation: Miki Yamada, Masahiro Sugimoto, Saki Naruse, Yuka Isono, Yuka Maeda, Ayana Sato, Akiko Matsumoto, Tatsuhiko Ikeda writing—original draft preparation: Miki Yamada, Masahiro Sugimoto writing—review and editing: Miki Yamada, Hiromitsu Jinno, Saki Naruse, Yuka Isono, Yuka Maeda, Ayana Sato, Akiko Matsumoto, Tatsuhiko Ikeda, Masahiro Sugimoto funding acquisition: Hiromitsu Jinno supervision: Hiromitsu Jinno.

Corresponding author

Correspondence to Hiromitsu Jinno.

Ethics declarations

Conflicts of interest

The authors declare no relevant financial or non-financial interests that could be construed as a potential conflict of interest.

Ethical approval

This study was conducted in compliance with the Declaration of Helsinki principles. The Ethics Committee of Teikyo University provided approval (no. 19–288).

Consent to Participate

Written informed consent was secured from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10549_2024_7370_MOESM1_ESM.pdf

Supplementary file 1 (PDF 100 KB)—Figure S1: Metabolomic data before preoperative treatment (Pre). A) Heatmap illustrating the top 25 metabolites with the highest variability as determined by the ANOVA test among the four groups, categorized by subtype. B) Box plots depicting substances with significant differences (P<0.05) as determined by the Kruskal-Wallis test among the three groups. C) Box plots illustrating substances with significant differences (P<0.05) as determined by the Kruskal-Wallis test among the three groups.

10549_2024_7370_MOESM2_ESM.pdf

Supplementary file 2 (PDF 173 KB)—Figure S2: Plasma metabolomic profile of the second course of preoperative treatment. A) Heatmap categorizing data by subtype, displaying the top 25 metabolites with the highest variability as determined by the ANOVA test among the four groups. B) Box plots highlighting substances with significant differences (P<0.05) as determined by the Kruskal-Wallis test among the three groups.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, M., Jinno, H., Naruse, S. et al. Predictive analysis of breast cancer response to neoadjuvant chemotherapy through plasma metabolomics. Breast Cancer Res Treat (2024). https://doi.org/10.1007/s10549-024-07370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10549-024-07370-2

Keywords

Navigation