Skip to main content

Advertisement

Log in

Metabolomics unravels subtype-specific characteristics related to neoadjuvant therapy response in breast cancer patients

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Breast cancer is the most diagnosed tumor and the leading cause of cancer death in women worldwide. Metabolomics allows the quantification of the entire set of metabolites in blood samples, making it possible to study differential metabolomics patterns related to neoadjuvant treatment in the breast cancer neoadjuvant setting.

Objectives

Characterizing metabolic differences in breast cancer blood samples according to their response to neoadjuvant treatment.

Methods

One hundred and three plasma samples of breast cancer patients, before receiving neoadjuvant treatment, were analyzed through UPLC-MS/MS metabolomics. Then, metabolomics data were analyzed using probabilistic graphical models and biostatistics methods.

Results

Metabolomics data allowed the identification of differences between groups according to response to neoadjuvant treatment. These differences were specific to each breast cancer subtype. Patients with HER2+ tumors showed differences in metabolites related to amino acids and carbohydrates pathways between the two pathological response groups. However, patients with triple-negative tumors showed differences in metabolites related to the long-chain fatty acids pathway. Patients with Luminal B tumors showed differences in metabolites related to acylcarnitine pathways.

Conclusions

It is possible to identify differential metabolomics patterns between complete and partial responses to neoadjuvant therapy, being this metabolomic profile specific for each breast cancer subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67, 93–99.

    PubMed  Google Scholar 

  • Armstrong, N., Ryder, S., Forbes, C., Ross, J., & Quek, R. G. (2019). A systematic review of the international prevalence of BRCA mutation in breast cancer. Clinical Epidemiology, 11, 543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., & Shi, B. (2015). Breast cancer intrinsic subtype classification, clinical use and future trends. American Journal of Cancer Research, 5, 2929–2943.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Abreu, G. C., Labouriau, R. & Edwards, D. (2009). High-dimensional graphical model search with graphd R package. arXiv preprint arXiv:0909.1234

  • Díaz-Beltrán, L., González-Olmedo, C., Luque-Caro, N., Díaz, C., Martín-Blázquez, A., Fernández-Navarro, M., Ortega-Granados, A. L., Gálvez-Montosa, F., Vicente, F., & del Pérez Palacio, J. (2021). Human plasma metabolomics for biomarker discovery: Targeting the molecular subtypes in breast cancer. Cancers, 13, 147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiehn, O. (2002). Plant Mol Biol, 48(1–2) 155–171

  • Ganti, S., Taylor, S. L., Kim, K., Hoppel, C. L., Guo, L., Yang, J., Evans, C., & Weiss, R. H. (2012). Urinary acylcarnitines are altered in human kidney cancer. International Journal of Cancer, 130, 2791–2800.

    Article  CAS  PubMed  Google Scholar 

  • Giró-Perafita, A., Sarrats, A., Pérez-Bueno, F., Oliveras, G., Buxó, M., Brunet, J., Viñas, G., & Miquel, T. P. (2017). Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer. Oncotarget, 8, 74391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giskeødegård, G. F., Grinde, M. T., Sitter, B., Axelson, D. E., Lundgren, S., Fjøsne, H. E., Dahl, S., Gribbestad, I. S., & Bathen, T. F. (2010). Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. Journal of Proteome Research, 9, 972–979.

    Article  PubMed  Google Scholar 

  • Haque, W., Verma, V., Hatch, S., Suzanne Klimberg, V., Brian Butler, E., & Teh, B. S. (2018). Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 170, 559–567.

    Article  CAS  PubMed  Google Scholar 

  • His, M., Viallon, V., Dossus, L., Gicquiau, A., Achaintre, D., Scalbert, A., Ferrari, P., Romieu, I., Onland-Moret, N. C., & Weiderpass, E. (2019). Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Medicine, 17, 1–13.

    Article  Google Scholar 

  • Howe, E., Holton, K., Nair, S., Schlauch, D., Sinha, R., & Quackenbush, J. (2010). Mev: Multiexperiment viewer. Springer.

    Google Scholar 

  • Kaushik, A. K., & Deberardinis, R. J. (2018). Applications of metabolomics to study cancer metabolism. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1870, 2–14.

    Article  CAS  PubMed  Google Scholar 

  • Kopecky, J., Rossmeisl, M., Flachs, P., Kuda, O., Brauner, P., Jilkova, Z., Stankova, B., Tvrzicka, E., & Bryhn, M. (2009). n-3 PUFA: Bioavailability and modulation of adipose tissue function: Symposium on ‘Frontiers in adipose tissue biology.’ Proceedings of the Nutrition Society, 68, 361–369.

    Article  CAS  PubMed  Google Scholar 

  • Koundouros, N., & Poulogiannis, G. (2020). Reprogramming of fatty acid metabolism in cancer. British Journal of Cancer, 122, 4–22.

    Article  CAS  PubMed  Google Scholar 

  • Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., & Cao, Y. (2017). Emerging roles of lipid metabolism in cancer metastasis. Molecular Cancer, 16, 1–10.

    Article  Google Scholar 

  • Moreau, K., Dizin, E., Ray, H., Luquain, C., Lefai, E., Foufelle, F., Billaud, M., Lenoir, G. M., & Dalla Venezia, N. (2006). BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. Journal of Biological Chemistry, 281, 3172–3181.

    Article  CAS  PubMed  Google Scholar 

  • Ogston, K. N., Miller, I. D., Payne, S., Hutcheon, A. W., Sarkar, T. K., Smith, I., Schofield, A., & Heys, S. D. (2003). A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. The Breast, 12, 320–327.

    Article  PubMed  Google Scholar 

  • Qiu, Y., Zhou, B., Su, M., Baxter, S., Zheng, X., Zhao, X., Yen, Y., & Jia, W. (2013). Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. International Journal of Molecular Sciences, 14, 8047–8061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay, R. R., Gandour, R. D., & Van Der Leij, F. R. (2001). Molecular enzymology of carnitine transfer and transport. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1546, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Renehan, A. G., Zwahlen, M., & Egger, M. (2015). Adiposity and cancer risk: New mechanistic insights from epidemiology. Nature Reviews Cancer, 15, 484–498.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, V. T., & Shulman, G. I. (2019). Nonalcoholic fatty liver disease, insulin resistance, and ceramides. New England Journal of Medicine, 381, 1866–1869.

    Article  PubMed  Google Scholar 

  • Sanderson, S. M., Gao, X., Dai, Z., & Locasale, J. W. (2019). Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nature Reviews Cancer, 19, 625–637.

    Article  CAS  PubMed  Google Scholar 

  • Santos, C. R., & Schulze, A. (2012). Lipid metabolism in cancer. The FEBS Journal, 279, 2610–2623.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, J. M., Chiang, N., Arita, M., & Serhan, C. N. (2007). Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature, 447, 869–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, S. M., Park, S. J., Lee, H., Siddiqi, F., Lee, J. E., Menzies, F. M., & Rubinsztein, D. C. (2019). Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metabolism, 29(192–201), e7.

    Google Scholar 

  • Sun, C., Wang, F., Zhang, Y., Yu, J., & Wang, X. (2020). Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics, 10, 7070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71, 209–249.

    PubMed  Google Scholar 

  • Tang, X., Lin, C.-C., Spasojevic, I., Iversen, E. S., Chi, J.-T., & Marks, J. R. (2014). A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Research, 16, 1–15.

    Article  Google Scholar 

  • Team, R. C. (2013). R: A language and environment for statistical computing (Versión, 4.3.0) [Programa informático]. R Foundation for Statistical Computing. https://www.r-project.org/

  • Tenori, L., Oakman, C., Claudino, W. M., Bernini, P., Cappadona, S., Nepi, S., Biganzoli, L., Arbushites, M. C., Luchinat, C., & Bertini, I. (2012). Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: A pilot study. Molecular Oncology, 6, 437–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trilla-Fuertes, L., Gámez-Pozo, A., López-Camacho, E., Prado-Vázquez, G., Zapater-Moros, A., López-Vacas, R., Arevalillo, J. M., Díaz-Almirón, M., Navarro, H., & Maín, P. (2020). Computational models applied to metabolomics data hints at the relevance of glutamine metabolism in breast cancer. BMC Cancer, 20, 1–11.

    Article  Google Scholar 

  • Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote) omics data. Nature Methods, 13, 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Vettore, L., Westbrook, R. L., & Tennant, D. A. (2020). New aspects of amino acid metabolism in cancer. British Journal of Cancer, 122, 150–156.

    Article  CAS  PubMed  Google Scholar 

  • von Minckwitz, G., Untch, M., Blohmer, J.-U., Costa, S. D., Eidtmann, H., Fasching, P. A., Gerber, B., Eiermann, W., Hilfrich, J., & Huober, J. (2012). Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. Journal of Clinical Oncology, 30, 1796–1804.

    Article  Google Scholar 

  • Wanders, D., Hobson, K., & Ji, X. (2020). Methionine restriction and cancer biology. Nutrients, 12, 684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15, 473.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z., Wang, S., Zhang, C., & Zhao, Y. (2020). Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Frontiers in Endocrinology, 11, 617.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to all the patients and their families who contributed the data that made this study possible.

Funding

This study was supported by Instituto de Salud Carlos III, Spanish Economy, and Competitiveness Ministry, Spain, and co-funded by the FEDER program, “Una forma de hacer Europa” (PI15/01310), Fundación Bancaria Unicaja. Grant Number: ONCOCHJ-UNICAJA-P1 and an unrestricted grant from Roche Farma. The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript. AZ-M and MIL-H are supported by Consejería de Educación, Juventud y Deporte of Comunidad de Madrid (IND2018/BMD-9262). EL-C is supported by the Spanish Economy and Competitiveness Ministry (PTQ2018-009760).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have directly participated in the preparation of this manuscript and have approved the final version submitted. LD-B carried out sampling management. LD-B and CG-O performed data curation. LT-F, AG-P, AZ-M, EL-C, and MIH-L performed the statistical analyses, the graphical model interpretation, and the ontology analyses. AZ-M, AG-P, JAFV, PZ, JAF and PSR conceived the study and participated in its design and interpretation. AZ-M drafted the manuscript. AG-P, JAFV, LD-B, and CG-O supported the manuscript drafting. JAFV, PZ and PS-R participated in funding acquisition and study supervision. AG-P and JAFV coordinated the study.

Corresponding author

Correspondence to Juan Ángel Fresno Vara.

Ethics declarations

Conflict of interest

JAFV, EE, and AG-P are shareholders in Biomedica Molecular Medicine SL. AZ-M and EL-C are employees of Biomedica Molecular Medicine SL.

Ethical approval

The study was approved by the Institutional Review Board of the Clinical Research Ethics Committee of Jaén (protocol code: PI-0455-2016 and date of approval: 27 October 2016). Clinical research was conducted under the Declaration of Helsinki and the International Conference on Harmonisation-Good Clinical Practice (ICH-GCP) guidelines. Written informed consent for participation was obtained from all patients involved in the study before blood sampling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapater-Moros, A., Díaz-Beltrán, L., Gámez-Pozo, A. et al. Metabolomics unravels subtype-specific characteristics related to neoadjuvant therapy response in breast cancer patients. Metabolomics 19, 60 (2023). https://doi.org/10.1007/s11306-023-02024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-02024-8

Keywords

Navigation