Skip to main content

Advertisement

Log in

Searching for the “Holy Grail” of breast cancer recurrence risk: a narrative review of the hunt for a better biomarker and the promise of circulating tumor DNA (ctDNA)

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

This paper is a narrative review of a major clinical challenge at the heart of breast cancer care: determining which patients are at risk of recurrence, which require systemic therapy, and which remain at risk in the survivorship phase of care despite initial therapy.

Methods

We review the literature on prognostic and predictive biomarkers in breast cancer with a focus on detection of minimal residual disease.

Results

While we have many tools to estimate and refine risk that are used to individualize local and systemic therapy, we know that we continue to over treat many patients and undertreat others. Many patients also experience what is, at least in hindsight, needless fear of recurrence. In this review, we frame this dilemma for the practicing breast oncologist and discuss the search for what we term the “holy grail” of breast cancer evaluation: the ideal biomarker of residual distant disease. We review the history of attempts to address this problem and the up-to-date science on biomarkers, circulating tumor cells and circulating tumor DNA (ctDNA).

Conclusion

This review suggests that the emerging promise of ctDNA may help resolve a crticical dilemma at the heart of breast cancer care, and improve prognostication, treatment selection, and outcomes for patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Ahmad A (2019) Breast cancer statistics: recent trends. Adv Exp Med Biol 1152:1–7. https://doi.org/10.1007/978-3-030-20301-6_1

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen RN, Esen BO, Mellemkjaer L, Christiansen P, Ejlertsen B, Lash TL, Norgaard M, Cronin-Fenton D (2022) The incidence of breast cancer recurrence 10–32 years after primary diagnosis. J Natl Cancer Inst 114:391–399. https://doi.org/10.1093/jnci/djab202

    Article  CAS  PubMed  Google Scholar 

  3. Tewari A, Chagpar AB (2014) Worry about breast cancer recurrence: a population-based analysis. Am Surg 80:640–645

    Article  PubMed  Google Scholar 

  4. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC (2020) Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol 38:1346–1366. https://doi.org/10.1200/JCO.19.02309

    Article  PubMed  Google Scholar 

  5. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JM, Bilous M, Ellis IO, Fitzgibbons P, Hanna W (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. Arch Pathol Lab Med 142:1364–1382

    Article  PubMed  Google Scholar 

  6. Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43

    Article  CAS  PubMed  Google Scholar 

  7. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A (2021) Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol 72:123–135

    Article  PubMed  Google Scholar 

  8. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423. https://doi.org/10.1073/pnas.0932692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hubay CA, Pearson OH, Marshall JS, Stellato TA, Rhodes RS, DeBanne SM, Rosenblatt J, Mansour EG, Hermann RE, Jones JC, Flynn WJ, Eckert C, McGuire WL (1981) Adjuvant therapy of stage II breast cancer: 48-month follow-up of a prospective randomized clinical trial. Breast Cancer Res Treat 1:77–82. https://doi.org/10.1007/BF01807895

    Article  CAS  PubMed  Google Scholar 

  10. Group EBCTC (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 365:1687–1717

    Article  Google Scholar 

  11. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21:100–107. https://doi.org/10.1097/PAP.0000000000000015

    Article  CAS  PubMed  Google Scholar 

  12. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744. https://doi.org/10.1200/JCO.1996.14.3.737

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Verma S (2015) Targeted therapy in her2-positive metastatic breast cancer: a review of the literature. Curr Oncol 22:S19-28. https://doi.org/10.3747/co.22.2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  15. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. https://doi.org/10.1056/NEJMoa052122

    Article  CAS  PubMed  Google Scholar 

  16. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS, Lee KS, Niikura N, Park YH, Xu B, Wang X, Gil-Gil M, Li W, Pierga JY, Im SA, Moore HCF, Rugo HS, Yerushalmi R, Zagouri F, Gombos A, Kim SB, Liu Q, Luo T, Saura C, Schmid P, Sun T, Gambhire D, Yung L, Wang Y, Singh J, Vitazka P, Meinhardt G, Harbeck N, Cameron DA, Investigators DE-BT (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N Engl J Med 387:9–20. https://doi.org/10.1056/NEJMoa2203690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reix N, Malina C, Chenard MP, Bellocq JP, Delpous S, Moliere S, Sevrin A, Neuberger K, Tomasetto C, Mathelin C (2016) A prospective study to assess the clinical utility of serum HER2 extracellular domain in breast cancer with HER2 overexpression. Breast Cancer Res Treat 160:249–259. https://doi.org/10.1007/s10549-016-4000-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreno-Aspitia A, Hillman DW, Dyar SH, Tenner KS, Gralow J, Kaufman PA, Davidson NE, Lafky JM, Reinholz MM, Lingle WL (2013) Soluble human epidermal growth factor receptor 2 (HER2) levels in patients with HER2-positive breast cancer receiving chemotherapy with or without trastuzumab: Results from North Central Cancer Treatment Group adjuvant trial N9831. Cancer 119:2675–2682

    Article  CAS  PubMed  Google Scholar 

  19. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, Hammond EH, Kuderer NM, Liu MC, Mennel RG (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 34:1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allison KH (2021) Prognostic and predictive parameters in breast pathology: a pathologist’s primer. Mod Pathol 34:94–106. https://doi.org/10.1038/s41379-020-00704-7

    Article  PubMed  Google Scholar 

  21. Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA (2014) New strategies for triple-negative breast cancer–deciphering the heterogeneity. Clin Cancer Res 20:782–790. https://doi.org/10.1158/1078-0432.CCR-13-0583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmid P, Cortes J, Pusztai L, McArthur H, Kummel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Foukakis T, Fasching PA, Cardoso F, Untch M, Jia L, Karantza V, Zhao J, Aktan G, Dent R, O’Shaughnessy J, Investigators K (2020) Pembrolizumab for early triple-negative breast cancer. N Engl J Med 382:810–821. https://doi.org/10.1056/NEJMoa1910549

    Article  CAS  PubMed  Google Scholar 

  23. Haffty BG, Harrold E, Khan AJ, Pathare P, Smith TE, Turner BC, Glazer PM, Ward B, Carter D, Matloff E, Bale AE, Alvarez-Franco M (2002) Outcome of conservatively managed early-onset breast cancer by BRCA1/2 status. Lancet 359:1471–1477. https://doi.org/10.1016/S0140-6736(02)08434-9

    Article  PubMed  Google Scholar 

  24. Geyer C Jr, Garber J, Gelber R, Yothers G, Taboada M, Ross L, Rastogi P, Cui K, Arahmani A, Aktan G (2022) Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann Oncol 33:1250–1268

    Article  CAS  PubMed  Google Scholar 

  25. Yamauchi H, Toi M, Takayama S, Nakamura S, Takano T, Cui K, Campbell C, De Vos L, Geyer C, Tutt A (2023) Adjuvant olaparib in the subset of patients from Japan with BRCA1-or BRCA2-mutated high-risk early breast cancer from the phase 3 OlympiA trial. Breast Cancer. https://doi.org/10.1007/s12282-023-01451-8

    Article  PubMed  Google Scholar 

  26. Duffy MJ, McDermott EW, Crown J (2017) Use of multiparameter tests for identifying women with early breast cancer who do not need adjuvant chemotherapy. Clin Chem 63:804–806

    Article  CAS  PubMed  Google Scholar 

  27. Nicolini A, Ferrari P, Duffy MJ (2018) Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol 52:56–73

    Article  CAS  PubMed  Google Scholar 

  28. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734. https://doi.org/10.1200/JCO.2005.04.7985

    Article  CAS  PubMed  Google Scholar 

  29. Kalinsky K, Barlow WE, Gralow JR, Meric-Bernstam F, Albain KS, Hayes DF, Lin NU, Perez EA, Goldstein LJ, Chia SKL, Dhesy-Thind S, Rastogi P, Alba E, Delaloge S, Martin M, Kelly CM, Ruiz-Borrego M, Gil-Gil M, Arce-Salinas CH, Brain EGC, Lee ES, Pierga JY, Bermejo B, Ramos-Vazquez M, Jung KH, Ferrero JM, Schott AF, Shak S, Sharma P, Lew DL, Miao J, Tripathy D, Pusztai L, Hortobagyi GN (2021) 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N Engl J Med 385:2336–2347. https://doi.org/10.1056/NEJMoa2108873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA Jr, Zujewski J, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin P, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Atkins JN, Berenberg JL, Sledge GW (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014. https://doi.org/10.1056/NEJMoa1510764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379:111–121. https://doi.org/10.1056/NEJMoa1804710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr (2019) Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med 380:2395–2405. https://doi.org/10.1056/NEJMoa1904819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartlett JMS, Sgroi DC, Treuner K, Zhang Y, Piper T, Salunga RC, Ahmed I, Doos L, Thornber S, Taylor KJ, Brachtel EF, Pirrie SJ, Schnabel CA, Rea DW (2022) Breast cancer index is a predictive biomarker of treatment benefit and outcome from extended tamoxifen therapy: final analysis of the trans-attom study. Clin Cancer Res 28:1871–1880. https://doi.org/10.1158/1078-0432.CCR-21-3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, Knox S, Matos E, Meulemans B, Neijenhuis PA, Nitz U, Passalacqua R, Ravdin P, Rubio IT, Saghatchian M, Smilde TJ, Sotiriou C, Stork L, Straehle C, Thomas G, Thompson AM, van der Hoeven JM, Vuylsteke P, Bernards R, Tryfonidis K, Rutgers E, Piccart M, Investigators M (2016) 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–729. https://doi.org/10.1056/NEJMoa1602253

    Article  CAS  PubMed  Google Scholar 

  35. Bartlett JM, Bayani J, Marshall A, Dunn JA, Campbell A, Cunningham C, Sobol MS, Hall PS, Poole CJ, Cameron DA, Earl HM, Rea DW, Macpherson IR, Canney P, Francis A, McCabe C, Pinder SE, Hughes-Davies L, Makris A, Stein RC, Optima TMG (2016) Comparing breast cancer multiparameter tests in the OPTIMA prelim trial: no test is more equal than the others. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw050

    Article  PubMed  PubMed Central  Google Scholar 

  36. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298. https://doi.org/10.1016/j.ejca.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  37. Gradishar WJ, Moran MS, Abraham J, Abramson V, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Hurvitz SA, Jankowitz RC, Javid SH, Krishnamurthy J, Leitch AM, Lyons J, Mortimer J, Patel SA, Pierce LJ, Rosenberger LH, Rugo HS, Schneider B, Smith ML, Soliman H, Stringer-Reasor EM, Telli ML, Wei M, Wisinski KB, Young JS, Yeung K, Dwyer MA, Kumar R (2023) NCCN guidelines(R) insights: breast cancer, version 4.2023. J Natl Compr Cancer Netw: JNCCN 21:594–608. https://doi.org/10.6004/jnccn.2023.0031

    Article  PubMed  Google Scholar 

  38. Rouzier R, Pronzato P, Chereau E, Carlson J, Hunt B, Valentine WJ (2013) Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast Cancer Res Treat 139:621–637. https://doi.org/10.1007/s10549-013-2559-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, Watson D, Geyer CE Jr, Wickerham DL, Wolmark N (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor–positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28:1677

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr, American Society of Clinical O (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312. https://doi.org/10.1200/JCO.2007.14.2364

    Article  CAS  PubMed  Google Scholar 

  41. Prat A, Guarneri V, Pascual T, Braso-Maristany F, Sanfeliu E, Pare L, Schettini F, Martinez D, Jares P, Griguolo G, Dieci MV, Cortes J, Llombart-Cussac A, Conte B, Marin-Aguilera M, Chic N, Puig-Butille JA, Martinez A, Galvan P, Tsai YH, Gonzalez-Farre B, Mira A, Vivancos A, Villagrasa P, Parker JS, Conte P, Perou CM (2022) Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer. EBioMedicine 75:103801. https://doi.org/10.1016/j.ebiom.2021.103801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prat A, Guarneri V, Paré L, Griguolo G, Pascual T, Dieci MV, Chic N, González-Farré B, Frassoldati A, Sanfeliu E (2020) A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation. Lancet Oncol 21:1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O (2013) Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139:539–552. https://doi.org/10.1007/s10549-013-2560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stuart-Harris R, Caldas C, Pinder SE, Pharoah P (2008) Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast 17:323–334. https://doi.org/10.1016/j.breast.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, He C, Han D, Zhou M, Wang Q, Tian J, Li L, Xu F, Zhou E, Yang K (2017) The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: a systematic review and meta-analysis. Future Oncol 13:843–857

    Article  CAS  PubMed  Google Scholar 

  46. Feeley LP, Mulligan AM, Pinnaduwage D, Bull SB, Andrulis IL (2014) Distinguishing luminal breast cancer subtypes by Ki67, progesterone receptor or TP53 status provides prognostic information. Mod Pathol 27:554–561. https://doi.org/10.1038/modpathol.2013.153

    Article  CAS  PubMed  Google Scholar 

  47. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  48. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750. https://doi.org/10.1093/jnci/djp082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ellis MJ, Suman VJ, Hoog J, Goncalves R, Sanati S, Creighton CJ, DeSchryver K, Crouch E, Brink A, Watson M, Luo J, Tao Y, Barnes M, Dowsett M, Budd GT, Winer E, Silverman P, Esserman L, Carey L, Ma CX, Unzeitig G, Pluard T, Whitworth P, Babiera G, Guenther JM, Dayao Z, Ota D, Leitch M, Olson JA Jr, Allred DC, Hunt K (2017) Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J Clin Oncol 35:1061–1069. https://doi.org/10.1200/JCO.2016.69.4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghezzi P, Magnanini S, Rinaldini M, Berardi F, Di Biagio G, Testare F, Tavoni N, Schittulli F, D’Amico C, Pedicini T (1994) Impact of follow-up testing on survival and health-related quality of life in breast cancer patients: a multicenter randomized controlled trial. JAMA 271:1587–1592

    Article  Google Scholar 

  51. Del Turco MR, Palli D, Cariddi A, Ciatto S, Pacini P, Distante V (1994) Intensive diagnostic follow-up after treatment of primary breast cancer: a randomized trial. JAMA 271:1593–1597

    Article  Google Scholar 

  52. Bolocan A, Ion D, Ciocan DN, Paduraru DN (2012) Prognostic and predictive factors in colorectal cancer. Chirurgia (Bucur) 107:555–563

    CAS  PubMed  Google Scholar 

  53. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342. https://doi.org/10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shao Y, Sun X, He Y, Liu C, Liu H (2015) Elevated levels of serum tumor markers CEA and CA15-3 are prognostic parameters for different molecular subtypes of breast cancer. PLoS ONE 10:e0133830. https://doi.org/10.1371/journal.pone.0133830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park B-W, Oh J-W, Kim J-H, Park S, Kim K-S, Kim J, Lee K (2008) Preoperative CA 15–3 and CEA serum levels as predictor for breast cancer outcomes. Ann Oncol 19:675–681

    Article  PubMed  Google Scholar 

  56. Lee JS, Park S, Park JM, Cho JH, Kim SI, Park BW (2013) Elevated levels of serum tumor markers CA 15–3 and CEA are prognostic factors for diagnosis of metastatic breast cancers. Breast Cancer Res Treat 141:477–484. https://doi.org/10.1007/s10549-013-2695-7

    Article  CAS  PubMed  Google Scholar 

  57. Riedinger JM, Goussot V, Desmoulins I, Lorgis V, Coutant C, Beltjens F, Lizard S, Fumoleau P (2016) CEA and early detection of relapse in breast cancer subtypes: Comparison with CA 15–3. Bull Cancer 103:434–443. https://doi.org/10.1016/j.bulcan.2016.02.003

    Article  PubMed  Google Scholar 

  58. Coveney EC, Geraghty JG, Sherry F, McDermott EW, Fennelly JJ, O’Higgins NJ, Duffy MJ (1995) The clinical value of CEA and CA 15–3 in breast cancer management. Int J Biol Markers 10:35–41. https://doi.org/10.1177/172460089501000107

    Article  CAS  PubMed  Google Scholar 

  59. Mariani L, Miceli R, Michilin S, Gion M (2009) Serial determination of CEA and CA 15.3 in breast cancer follow-up: an assessment of their diagnostic accuracy for the detection of tumour recurrences. Biomarkers 14:130–136

    Article  CAS  PubMed  Google Scholar 

  60. O’Dwyer PJ, Duffy MJ, O’Sullivan F, McDermott E, Losty P, O’Higgins NJ (1990) CEA and CA 15–3 in primary and recurrent breast cancer. World J Surg. https://doi.org/10.1007/BF01658788

    Article  PubMed  Google Scholar 

  61. Svobodova S, Kucera R, Fiala O, Karlikova M, Narsanska A, Zednikova I, Treska V, Slouka D, Rousarova M, Topolcan O (2018) CEA, CA 15–3, and TPS as prognostic factors in the follow-up monitoring of patients after radical surgery for breast cancer. Anticancer Res 38:465–469

    PubMed  Google Scholar 

  62. Lumachi F, Basso SM, Bonamini M, Marzano B, Milan E, Waclaw BU, Chiara GB (2010) Relationship between preoperative serum markers CA 15–3 and CEA and relapse of the disease in elderly (> 65 years) women with breast cancer. Anticancer Res 30:2331–2334

    CAS  PubMed  Google Scholar 

  63. Pedersen AC, Sorensen PD, Jacobsen EH, Madsen JS, Brandslund I (2013) Sensitivity of CA 15–3, CEA and serum HER2 in the early detection of recurrence of breast cancer. Clin Chem Lab Med 51:1511–1519. https://doi.org/10.1515/cclm-2012-0488

    Article  CAS  PubMed  Google Scholar 

  64. Hayes DF, Zurawski VR Jr, Kufe DW (1986) Comparison of circulating CA15-3 and carcinoembryonic antigen levels in patients with breast cancer. J Clin Oncol 4:1542–1550

    Article  CAS  PubMed  Google Scholar 

  65. Colomer R, Ruibal A, Genolla J, Rubio D, Del Campo JM, Bodi R, Salvador L (1989) Circulating CA 15–3 levels in the postsurgical follow-up of breast cancer patients and in non-malignant diseases. Breast Cancer Res Treat 13:123–133. https://doi.org/10.1007/BF01806524

    Article  CAS  PubMed  Google Scholar 

  66. Kokko R, Hakama M, Holli K (2005) Follow-up cost of breast cancer patients with localized disease after primary treatment: a randomized trial. Breast Cancer Res Treat 93:255–260. https://doi.org/10.1007/s10549-005-5199-2

    Article  CAS  PubMed  Google Scholar 

  67. Schnipper LE, Smith TJ, Raghavan D, Blayney DW, Ganz PA, Mulvey TM, Wollins DS (2012) American Society of Clinical Oncology identifies five key opportunities to improve care and reduce costs: the top five list for oncology. J Clin Oncol 30:1715–1724. https://doi.org/10.1200/JCO.2012.42.8375

    Article  PubMed  Google Scholar 

  68. Hartkopf AD, Brucker SY, Taran FA, Harbeck N, von Au A, Naume B, Pierga JY, Hoffmann O, Beckmann MW, Ryden L, Fehm T, Aft R, Sola M, Walter V, Rack B, Schuetz F, Borgen E, Ta MH, Bittner AK, Fasching PA, Ferno M, Krawczyk N, Weilbaecher K, Margeli M, Hahn M, Jueckstock J, Domschke C, Bidard FC, Kasimir-Bauer S, Schoenfisch B, Kurt AG, Wallwiener M, Gebauer G, Klein CA, Wallwiener D, Janni W, Pantel K (2021) Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur J Cancer 154:128–137. https://doi.org/10.1016/j.ejca.2021.06.028

    Article  CAS  PubMed  Google Scholar 

  69. Volmer L, Koch A, Matovina S, Dannehl D, Weiss M, Welker G, Hahn M, Engler T, Wallwiener M, Walter CB, Oberlechner E, Brucker SY, Pantel K, Hartkopf A (2022) Neoadjuvant chemotherapy of patients with early breast cancer is associated with increased detection of disseminated tumor cells in the bone marrow. Cancers (Basel). https://doi.org/10.3390/cancers14030635

    Article  PubMed  Google Scholar 

  70. Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Bastert G (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88:1652–1658. https://doi.org/10.1093/jnci/88.22.1652

    Article  CAS  PubMed  Google Scholar 

  71. Slade MJ, Coombes RC (2007) The clinical significance of disseminated tumor cells in breast cancer. Nat Clin Pract Oncol 4:30–41. https://doi.org/10.1038/ncponc0685

    Article  PubMed  Google Scholar 

  72. Ring A, Spataro M, Wicki A, Aceto N (2022) Clinical and biological aspects of disseminated tumor cells and dormancy in breast cancer. Front Cell Dev Biol 10:929893. https://doi.org/10.3389/fcell.2022.929893

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791. https://doi.org/10.1056/NEJMoa040766

    Article  CAS  PubMed  Google Scholar 

  74. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O’Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32:3483–3489. https://doi.org/10.1200/JCO.2014.56.2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cristofanilli M, Pierga JY, Reuben J, Rademaker A, Davis AA, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, Grisanti S, Giuliano M, Garcia-Saenz JA, Stebbing J, Caldas C, Gazzaniga P, Manso L, Zamarchi R, de Lascoiti AF, De Mattos-Arruda L, Ignatiadis M, Cabel L, van Laere SJ, Meier-Stiegen F, Sandri MT, Vidal-Martinez J, Politaki E, Consoli F, Generali D, Cappelletti MR, Diaz-Rubio E, Krell J, Dawson SJ, Raimondi C, Rutten A, Janni W, Munzone E, Caranana V, Agelaki S, Almici C, Dirix L, Solomayer EF, Zorzino L, Darrigues L, Reis-Filho JS, Gerratana L, Michiels S, Bidard FC, Pantel K (2019) The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol 134:39–45. https://doi.org/10.1016/j.critrevonc.2018.12.004

    Article  PubMed  Google Scholar 

  76. Madic J, Kiialainen A, Bidard FC, Birzele F, Ramey G, Leroy Q, Rio Frio T, Vaucher I, Raynal V, Bernard V, Lermine A, Clausen I, Giroud N, Schmucki R, Milder M, Horn C, Spleiss O, Lantz O, Stern MH, Pierga JY, Weisser M, Lebofsky R (2015) Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int J Cancer 136:2158–2165. https://doi.org/10.1002/ijc.29265

    Article  CAS  PubMed  Google Scholar 

  77. Hall C, Karhade M, Laubacher B, Anderson A, Kuerer H, DeSynder S, Lucci A (2015) Circulating tumor cells after neoadjuvant chemotherapy in stage I-III triple-negative breast cancer. Ann Surg Oncol 22(Suppl 3):S552-558. https://doi.org/10.1245/s10434-015-4600-6

    Article  PubMed  Google Scholar 

  78. Bidard FC, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, Naume B, Horiguchi J, Gisbert-Criado R, Sleijfer S, Toi M, Garcia-Saenz JA, Hartkopf A, Generali D, Rothe F, Smerage J, Muinelo-Romay L, Stebbing J, Viens P, Magbanua MJM, Hall CS, Engebraaten O, Takata D, Vidal-Martinez J, Onstenk W, Fujisawa N, Diaz-Rubio E, Taran FA, Cappelletti MR, Ignatiadis M, Proudhon C, Wolf DM, Bauldry JB, Borgen E, Nagaoka R, Caranana V, Kraan J, Maestro M, Brucker SY, Weber K, Reyal F, Amara D, Karhade MG, Mathiesen RR, Tokiniwa H, Llombart-Cussac A, Meddis A, Blanche P, d’Hollander K, Cottu P, Park JW, Loibl S, Latouche A, Pierga JY, Pantel K (2018) Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. J Natl Cancer Inst 110:560–567. https://doi.org/10.1093/jnci/djy018

    Article  PubMed  Google Scholar 

  79. Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA, Fehm T, Schneeweiss A, Lichtenegger W, Beckmann MW, Friese K, Pantel K, Janni W, Group SS (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju066

    Article  PubMed  PubMed Central  Google Scholar 

  80. Janni WJ, Rack B, Terstappen LW, Pierga J-Y, Taran F-A, Fehm T, Hall C, De Groot MR, Bidard F-C, Friedl TW (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancerprognostic role of CTCs in primary breast cancer. Clin Cancer Res 22:2583–2593

    Article  CAS  PubMed  Google Scholar 

  81. Kwan TT, Bardia A, Spring LM, Giobbie-Hurder A, Kalinich M, Dubash T, Sundaresan T, Hong X, LiCausi JA, Ho U, Silva EJ, Wittner BS, Sequist LV, Kapur R, Miyamoto DT, Toner M, Haber DA, Maheswaran S (2018) A Digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov 8:1286–1299. https://doi.org/10.1158/2159-8290.CD-18-0432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ignatiadis M, Rack B, Rothe F, Riethdorf S, Decraene C, Bonnefoi H, Dittrich C, Messina C, Beauvois M, Trapp E, Goulioti T, Tryfonidis K, Pantel K, Repollet M, Janni W, Piccart M, Sotiriou C, Litiere S, Pierga JY (2016) Liquid biopsy-based clinical research in early breast cancer: The EORTC 90091–10093 treat CTC trial. Eur J Cancer 63:97–104. https://doi.org/10.1016/j.ejca.2016.04.024

    Article  PubMed  Google Scholar 

  83. Sparano J, O’Neill A, Alpaugh K, Wolff AC, Northfelt DW, Dang CT, Sledge GW, Miller KD (2018) Association of circulating tumor cells with late recurrence of estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol 4:1700–1706. https://doi.org/10.1001/jamaoncol.2018.2574

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, Stathopoulos EN, Stathopoulou A, Lianidou E, Chlouverakis G, Sotiriou C, Georgoulias V, Mavroudis D (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 25:5194–5202. https://doi.org/10.1200/JCO.2007.11.7762

    Article  PubMed  Google Scholar 

  85. Banys-Paluchowski M, Krawczyk N, Fehm T (2016) Potential role of circulating tumor cell detection and monitoring in breast cancer: a review of current evidence. Front Oncol 6:255. https://doi.org/10.3389/fonc.2016.00255

    Article  PubMed  PubMed Central  Google Scholar 

  86. Banys-Paluchowski M, Schneck H, Blassl C, Schultz S, Meier-Stiegen F, Niederacher D, Krawczyk N, Ruckhaeberle E, Fehm T, Neubauer H (2015) Prognostic relevance of circulating tumor cells in molecular subtypes of breast cancer. Geburtshilfe Frauenheilkd 75:232–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trapp E, Janni W, Schindlbeck C, Juckstock J, Andergassen U, de Gregorio A, Alunni-Fabbroni M, Tzschaschel M, Polasik A, Koch JG, Friedl TWP, Fasching PA, Haeberle L, Fehm T, Schneeweiss A, Beckmann MW, Pantel K, Mueller V, Rack B, Scholz C, Group SS (2019) Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. J Natl Cancer Inst 111:380–387. https://doi.org/10.1093/jnci/djy152

    Article  CAS  PubMed  Google Scholar 

  88. Vasseur A, Kiavue N, Bidard FC, Pierga JY, Cabel L (2021) Clinical utility of circulating tumor cells: an update. Mol Oncol 15:1647–1666. https://doi.org/10.1002/1878-0261.12869

    Article  CAS  PubMed  Google Scholar 

  89. Bilani N, Elson L, Liang H, Elimimian EB, Arteta-Bulos R, Nahleh Z (2020) Prognostic and predictive value of circulating and disseminated tumor cells in breast cancer: a national cancer database (NCDB) analysis. Technol Cancer Res Treat 19:1533033820980107. https://doi.org/10.1177/1533033820980107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chedid J, Allam S, Chamseddine N, Bou Zerdan M, El Nakib C, Assi HI (2022) Role of circulating tumor DNA and circulating tumor cells in breast cancer: history and updates. SAGE Open Med 10:20503121221077840. https://doi.org/10.1177/20503121221077838

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cheng ML, Pectasides E, Hanna GJ, Parsons HA, Choudhury AD, Oxnard GR (2021) Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions. CA Cancer J Clin 71:176–190. https://doi.org/10.3322/caac.21650

    Article  PubMed  Google Scholar 

  92. Burstein HJ, DeMichele A, Somerfield MR, Henry NL, Biomarker T, Targeted Therapy in Metastatic Breast Cancer Expert P (2023) Testing for ESR1 mutations to guide therapy for hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer: ASCO guideline rapid recommendation update. J Clin Oncol 41:3423–3425. https://doi.org/10.1200/JCO.23.00638

    Article  CAS  PubMed  Google Scholar 

  93. Bidard FC, Kaklamani VG, Neven P, Streich G, Montero AJ, Forget F, Mouret-Reynier MA, Sohn JH, Taylor D, Harnden KK, Khong H, Kocsis J, Dalenc F, Dillon PM, Babu S, Waters S, Deleu I, Garcia Saenz JA, Bria E, Cazzaniga M, Lu J, Aftimos P, Cortes J, Liu S, Tonini G, Laurent D, Habboubi N, Conlan MG, Bardia A (2022) Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial. J Clin Oncol 40:3246–3256. https://doi.org/10.1200/JCO.22.00338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, Qiu J, Fan J, Song P, Yu J, Zhang X, King-Kallimanis BL, Chen W, Ricks TK, Gong Y, Wang X, Windsor K, Rhieu SY, Geiser G, Banerjee A, Chen X, Reyes Turcu F, Chatterjee DK, Pathak A, Seidman J, Ghosh S, Philip R, Goldberg KB, Kluetz PG, Tang S, Amiri-Kordestani L, Theoret MR, Pazdur R, Beaver JA (2021) FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin Cancer Res 27:1842–1849. https://doi.org/10.1158/1078-0432.CCR-20-3652

    Article  CAS  PubMed  Google Scholar 

  95. Andre F, Ciruelos EM, Juric D, Loibl S, Campone M, Mayer IA, Rubovszky G, Yamashita T, Kaufman B, Lu YS, Inoue K, Papai Z, Takahashi M, Ghaznawi F, Mills D, Kaper M, Miller M, Conte PF, Iwata H, Rugo HS (2021) Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol 32:208–217. https://doi.org/10.1016/j.annonc.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  96. Bidard F-C, Hardy-Bessard A-C, Dalenc F, Bachelot T, Pierga J-Y, de la Motte RT, Sabatier R, Dubot C, Frenel J-S, Ferrero JM (2022) Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 23:1367–1377

    Article  CAS  PubMed  Google Scholar 

  97. Corcoran RB, Chabner BA (2018) Application of Cell-free DNA analysis to cancer treatment. N Engl J Med 379:1754–1765. https://doi.org/10.1056/NEJMra1706174

    Article  CAS  PubMed  Google Scholar 

  98. Weaver CH (2023) MRD ctDNA Surveillance for breast cancer recurrence. In: https://news.cancerconnect.com/breast-cancer/mrd-ctdna-surveillance-for-breast-cancer-recurrence#:~:text=The%20Centers%20for%20Medicare%20%26%20Medicaid,IIb%20or%20higher%20breast%20cancer

  99. Cullinane C, Fleming C, O’Leary DP, Hassan F, Kelly L, O’Sullivan MJ, Corrigan MA, Redmond HP (2020) Association of circulating tumor DNA with disease-free survival in breast cancer: a systematic review and meta-analysis. JAMA Netw Open 3:e2026921. https://doi.org/10.1001/jamanetworkopen.2020.26921

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li S, Lai H, Liu J, Liu Y, Jin L, Li Y, Liu F, Gong Y, Guan Y, Yi X, Shi Q, Cai Z, Li Q, Li Y, Zhu M, Wang J, Yang Y, Wei W, Yin D, Song E, Liu Q (2020) Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. JCO Precis Oncol 4:244–257. https://doi.org/10.1200/PO.19.00292

    Article  Google Scholar 

  101. Radovich M, Jiang G, Hancock BA, Chitambar C, Nanda R, Falkson C, Lynce FC, Gallagher C, Isaacs C, Blaya M, Paplomata E, Walling R, Daily K, Mahtani R, Thompson MA, Graham R, Cooper ME, Pavlick DC, Albacker LA, Gregg J, Solzak JP, Chen YH, Bales CL, Cantor E, Shen F, Storniolo AMV, Badve S, Ballinger TJ, Chang CL, Zhong Y, Savran C, Miller KD, Schneider BP (2020) Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol 6:1410–1415. https://doi.org/10.1001/jamaoncol.2020.2295

    Article  PubMed  Google Scholar 

  102. Cavallone L, Aguilar-Mahecha A, Lafleur J, Brousse S, Aldamry M, Roseshter T, Lan C, Alirezaie N, Bareke E, Majewski J, Ferrario C, Hassan S, Discepola F, Seguin C, Mihalcioiu C, Marcus EA, Robidoux A, Roy JA, Pelmus M, Basik M (2020) Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci Rep 10:14704. https://doi.org/10.1038/s41598-020-71236-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Magbanua MJM, Swigart LB, Wu HT, Hirst GL, Yau C, Wolf DM, Tin A, Salari R, Shchegrova S, Pawar H, Delson AL, DeMichele A, Liu MC, Chien AJ, Tripathy D, Asare S, Lin CJ, Billings P, Aleshin A, Sethi H, Louie M, Zimmermann B, Esserman LJ, van’t Veer LJ (2021) Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 32:229–239. https://doi.org/10.1016/j.annonc.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  104. Papakonstantinou A, Gonzalez NS, Pimentel I, Sunol A, Zamora E, Ortiz C, Espinosa-Bravo M, Peg V, Vivancos A, Saura C, Villacampa G, Oliveira M (2022) Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: a systematic review and meta-analysis. Cancer Treat Rev 104:102362. https://doi.org/10.1016/j.ctrv.2022.102362

    Article  CAS  PubMed  Google Scholar 

  105. Zhou Q, Gampenrieder SP, Frantal S, Rinnerthaler G, Singer CF, Egle D, Pfeiler G, Bartsch R, Wette V, Pichler A (2022) Persistence of ctDNA in patients with breast cancer during neoadjuvant treatment is a significant predictor of poor tumor response. Clin Cancer Res 28:697–707

    Article  CAS  PubMed  Google Scholar 

  106. Magbanua MJM, Brown Swigart L, Ahmed Z, Sayaman RW, Renner D, Kalashnikova E, Hirst GL, Yau C, Wolf DM, Li W, Delson AL, Asare S, Liu MC, Albain K, Chien AJ, Forero-Torres A, Isaacs C, Nanda R, Tripathy D, Rodriguez A, Sethi H, Aleshin A, Rabinowitz M, Perlmutter J, Symmans WF, Yee D, Hylton NM, Esserman LJ, DeMichele AM, Rugo HS, van’t Veer LJ (2023) Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell 41(1091–1102):e1094. https://doi.org/10.1016/j.ccell.2023.04.008

    Article  CAS  Google Scholar 

  107. Garcia-Murillas I, Chopra N, Comino-Mendez I, Beaney M, Tovey H, Cutts RJ, Swift C, Kriplani D, Afentakis M, Hrebien S, Walsh-Crestani G, Barry P, Johnston SRD, Ring A, Bliss J, Russell S, Evans A, Skene A, Wheatley D, Dowsett M, Smith IE, Turner NC (2019) Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol 5:1473–1478. https://doi.org/10.1001/jamaoncol.2019.1838

    Article  PubMed  PubMed Central  Google Scholar 

  108. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P, Nerurkar A, Kozarewa I, Garrido JA, Dowsett M, Reis-Filho JS, Smith IE, Turner NC (2015) Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 7:302ra133. https://doi.org/10.1126/scitranslmed.aab0021

    Article  PubMed  Google Scholar 

  109. Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, Ali S, Cleator S, Kenny L, Stebbing J (2019) Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrencepersonalized ctDNA detection of breast cancer recurrence. Clin Cancer Res 25:4255–4263

    Article  CAS  PubMed  Google Scholar 

  110. Olsson E, Winter C, George A, Chen Y, Howlin J, Tang MH, Dahlgren M, Schulz R, Grabau D, van Westen D, Ferno M, Ingvar C, Rose C, Bendahl PO, Ryden L, Borg A, Gruvberger-Saal SK, Jernstrom H, Saal LH (2015) Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med 7:1034–1047. https://doi.org/10.15252/emmm.201404913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shaw J, Page K, Ambasger B, De Bruin E, Kalashnikova E, Hastings R, McEwen R, Allsopp RA, Sethi H, Gleason KLT, Stetson D, Fernandez Garci D, Guttery D, Rehman F, Renner D, Ali S, Ahmed S, Armstrong AC, Coombes RC (2022) Serial postoperative ctDNA monitoring of breast cancer recurrence. J Clin Oncol 40:562–562. https://doi.org/10.1200/JCO.2022.40.16_suppl.562

    Article  Google Scholar 

  112. Lipsyc-Sharf M, de Bruin EC, Santos K, McEwen R, Stetson D, Patel A, Kirkner GJ, Hughes ME, Tolaney SM, Partridge AH, Krop IE, Knape C, Feger U, Marsico G, Howarth K, Winer EP, Lin NU, Parsons HA (2022) Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. J Clin Oncol 40:2408–2419. https://doi.org/10.1200/JCO.22.00908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Janni W, Huober J, Braun T, Müller V, Fink A, de Gregorio A, Rack B, Friedl TW, Wiesmüller L, Pantel K (2022) Multiomic, plasma-only circulating tumor DNA (ctDNA) assay identifies breast cancer patients with minimal residual disease (MRD) and predicts distant recurrence. Can Res 82:3403–3403

    Article  Google Scholar 

  114. Natera (2023) Medicare extends coverage of Natera’s SignateraTM MRD test to breast cancer. In: https://www.natera.com/company/news/medicare-extends-coverage-of-nateras-signatera-mrd-test-to-breast-cancer/

  115. Douglas MP, Gray SW, Phillips KA (2020) Private payer and medicare coverage for circulating tumor DNA testing: a historical analysis of coverage policies from 2015 to 2019. J Natl Compr Canc Netw 18:866–872. https://doi.org/10.6004/jnccn.2020.7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Natera Signatera™ frequently asked questions. In: https://www.natera.com/oncology/signatera-advanced-cancer-detection/faq/

  117. Mittal A, Molto C, Tamimi F, Iorio MD, Al-Showbaki L, Cescon DW, Amir E (2022) Test performance and clinical validity of circulating tumor DNA (ctDNA) in predicting relapse in solid tumors treated with curative intent therapy. J Clin Oncol 40:3036–3036. https://doi.org/10.1200/JCO.2022.40.16_suppl.3036

    Article  Google Scholar 

  118. Turner NC, Swift C, Jenkins B, Kilburn L, Coakley M, Beaney M, Fox L, Goddard K, Garcia-Murillas I, Proszek P, Hall P, Harper-Wynne C, Hickish T, Kernaghan S, Macpherson IR, Okines AFC, Palmieri C, Perry S, Randle K, Snowdon C, Stobart H, Wardley AM, Wheatley D, Waters S, Winter MC, Hubank M, Allen SD, Bliss JM (2023) Results of the c-TRAK TN trial: a clinical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate- and high-risk early-stage triple-negative breast cancer. Ann Oncol 34:200–211. https://doi.org/10.1016/j.annonc.2022.11.005

    Article  CAS  PubMed  Google Scholar 

  119. Safe De-escalation of chemotherapy for stage 1 breast cancer. In: https://ClinicalTrials.gov/show/NCT05058183

  120. Medford AJ, Scarpetti L, Niemierko A, Isakoff SJ, Moy B, Wander SA, Deluca E, Abraham E, Shin J, Schnipper L (2023) Abstract PD17–03: Cell-free DNA monitoring in a phase II study of adjuvant endocrine therapy with CDK 4/6 inhibitor ribociclib for localized HR+/HER2-breast cancer (LEADER). Can Res 83:PD17-03

    Article  Google Scholar 

  121. DNA-guided second line adjuvant therapy for high residual risk, stage II-III, hormone receptor positive, HER2 negative breast cancer. In: https://ClinicalTrials.gov/show/NCT04567420

  122. TREAT ctDNA Elacestrant. In: https://ClinicalTrials.gov/show/NCT05512364

  123. A Prospective, Phase II trial using ctDNA to initiate post-operation boost therapy after adjuvant chemotherapy in TNBC. In: https://ClinicalTrials.gov/show/NCT04803539

  124. Royal Marsden N A Trial of early detection of molecular relapse with circulating tumour DNA tracking and treatment with palbociclib plus fulvestrant versus standard endocrine therapy in patients with ER positive HER2 negative breast cancer. In: https://trialbulletin.com/lib/entry/ct-04985266

  125. Dittrich C, Kosty M, Jezdic S, Pyle D, Berardi R, Bergh J, El-Saghir N, Lotz JP, Osterlund P, Pavlidis N, Purkalne G, Awada A, Banerjee S, Bhatia S et al (2016) ESMO/ASCO recommendations for a global curriculum in medical oncology edition 2016. ESMO Open 1:e000097

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, Italiano A, Lindberg J, Merker JD, Montagut C, Normanno N, Pantel K, Pentheroudakis G, Popat S, Reis-Filho JS, Tie J, Seoane J, Tarazona N, Yoshino T, Turner NC (2022) ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol 33:750–768. https://doi.org/10.1016/j.annonc.2022.05.520

    Article  CAS  PubMed  Google Scholar 

  127. Sánchez-Herrero E, Serna-Blasco R, Robado de Lope L, Gonzalez-Rumayor V, Romero A, Provencio M (2022) Circulating Tumor DNA as a Cancer Biomarker: an overview of biological features and factors that may impact on ctDNA analysis. Front Oncol 12:943253–943253

    Article  PubMed  PubMed Central  Google Scholar 

  128. Alix-Panabieres C, Pantel K (2021) Liquid biopsy: from discovery to clinical application. Cancer Discov 11:858–873. https://doi.org/10.1158/2159-8290.CD-20-1311

    Article  CAS  PubMed  Google Scholar 

  129. Tellez-Gabriel M, Knutsen E, Perander M (2020) Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. Int J Mol Sci 21:9457. https://doi.org/10.3390/ijms21249457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM (2017) Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 8:e3045. https://doi.org/10.1038/cddis.2017.440

    Article  PubMed  PubMed Central  Google Scholar 

  131. Singh S, Saini H, Sharma A, Gupta S, Huddar VG, Tripathi R (2023) Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol 13:1155254. https://doi.org/10.3389/fonc.2023.1155254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ignatiadis M, Litiere S, Rothe F, Riethdorf S, Proudhon C, Fehm T, Aalders K, Forstbauer H, Fasching PA, Brain E, Vuylsteke P, Guardiola E, Lorenz R, Pantel K, Tryfonidis K, Janni W, Piccart M, Sotiriou C, Rack B, Pierga JY (2018) Trastuzumab versus observation for HER2 nonamplified early breast cancer with circulating tumor cells (EORTC 90091–10093, BIG 1–12, Treat CTC): a randomized phase II trial. Ann Oncol 29:1777–1783. https://doi.org/10.1093/annonc/mdy211

    Article  CAS  PubMed  Google Scholar 

  133. Grigoryeva ES, Tashireva LA, Alifanov VV, Savelieva OE, Vtorushin SV, Zavyalova MV, Cherdyntseva NV, Perelmuter VM (2022) The novel association of early apoptotic circulating tumor cells with treatment outcomes in breast cancer patients. Int J Mol Sci. https://doi.org/10.3390/ijms23169475

    Article  PubMed  PubMed Central  Google Scholar 

  134. Trapp EK, Fasching PA, Fehm T, Schneeweiss A, Mueller V, Harbeck N, Lorenz R, Schumacher C, Heinrich G, Schochter F, de Gregorio A, Tzschaschel M, Rack B, Janni W, Friedl TWP (2022) Does the presence of circulating tumor cells in high-risk early breast cancer patients predict the site of first metastasis-results from the adjuvant success a trial. Cancers (Basel). https://doi.org/10.3390/cancers14163949

    Article  PubMed  Google Scholar 

  135. Zhou M, Xie P, Chen L, Zhang P, Xu F (2023) Correlation between the expression of CD24 on circulating tumor cells and prognosis in breast cancer. Am J Transl Res 15:1941–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Stergiopoulou D, Markou A, Strati A, Zavridou M, Tzanikou E, Mastoraki S, Kallergi G, Georgoulias V, Lianidou E (2023) Comprehensive liquid biopsy analysis as a tool for the early detection of minimal residual disease in breast cancer. Sci Rep 13:1258. https://doi.org/10.1038/s41598-022-25400-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mandel P, Metais P (1948) Nuclear Acids In Human Blood Plasma. C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  138. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  139. Rodriguez BJ, Cordoba GD, Aranda AG, Alvarez M, Vicioso L, Perez CL, Hernando C, Bermejo B, Parreno AJ, Lluch A, Ryder MB, Jones FS, Fredebohm J, Holtrup F, Queipo-Ortuno MI, Alba E (2019) Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. J Clin Med. https://doi.org/10.3390/jcm8081183

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hai L, Li L, Liu Z, Tong Z (2020) Sun Y (2022) Whole-genome circulating tumor DNA methylation landscape reveals sensitive biomarkers of breast cancer. MedComm 3:e134. https://doi.org/10.1002/mco2.134

    Article  CAS  Google Scholar 

  141. Lehner J, Stotzer OJ, Fersching D, Nagel D, Holdenrieder S (2013) Circulating plasma DNA and DNA integrity in breast cancer patients undergoing neoadjuvant chemotherapy. Clin Chim Acta 425:206–211. https://doi.org/10.1016/j.cca.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  142. Riva F, Bidard FC, Houy A, Saliou A, Madic J, Rampanou A, Hego C, Milder M, Cottu P, Sablin MP, Vincent-Salomon A, Lantz O, Stern MH, Proudhon C, Pierga JY (2017) Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem 63:691–699. https://doi.org/10.1373/clinchem.2016.262337

    Article  CAS  PubMed  Google Scholar 

  143. Rothe F, Silva MJ, Venet D, Campbell C, Bradburry I, Rouas G, de Azambuja E, Maetens M, Fumagalli D, Rodrik-Outmezguine V, Di Cosimo S, Rosa D, Chia S, Wardley A, Ueno T, Janni W, Huober J, Baselga J, Piccart M, Loi S, Sotiriou C, Dawson SJ, Ignatiadis M (2019) Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin Cancer Res 25:3581–3588. https://doi.org/10.1158/1078-0432.CCR-18-2521

    Article  CAS  PubMed  Google Scholar 

  144. Ciriaco N, Zamora E, Escrivá-de-Romaní S, Miranda Gómez I, Jiménez Flores J, Saura C, Sloane H, Starus A, Fredebohm J, Georgieva L (2022) Clearance of ctDNA in triple-negative and HER2-positive breast cancer patients during neoadjuvant treatment is correlated with pathologic complete response. Ther Adv Med Oncol 14:17588359221139600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cailleux F, Agostinetto E, Lambertini M, Rothe F, Wu HT, Balcioglu M, Kalashnikova E, Vincent D, Viglietti G, Gombos A, Papagiannis A, Veys I, Awada A, Sethi H, Aleshin A, Larsimont D, Sotiriou C, Venet D, Ignatiadis M (2022) Circulating tumor DNA after neoadjuvant chemotherapy in breast cancer is associated with disease relapse. JCO Precis Oncol 6:e2200148. https://doi.org/10.1200/PO.22.00148

    Article  PubMed  Google Scholar 

  146. Parsons HA, Blewett T, Chu X, Sridhar S, Santos K, Xiong K, Abramson VG, Patel A, Cheng J, Brufsky A (2023) Circulating tumor DNA association with residual cancer burden after neoadjuvant chemotherapy in triple-negative breast cancer in TBCRC. medRxiv. https://doi.org/10.1101/2023.03.06.23286772

    Article  PubMed  PubMed Central  Google Scholar 

  147. Beaver JA, Jelovac D, Balukrishna S, Cochran R, Croessmann S, Zabransky DJ, Wong HY, Toro PV, Cidado J, Blair BG, Chu D, Burns T, Higgins MJ, Stearns V, Jacobs L, Habibi M, Lange J, Hurley PJ, Lauring J, VanDenBerg D, Kessler J, Jeter S, Samuels ML, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff AC, Park BH (2014) Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res 20:2643–2650. https://doi.org/10.1158/1078-0432.CCR-13-2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oshiro C, Kagara N, Naoi Y, Shimoda M, Shimomura A, Maruyama N, Shimazu K, Kim SJ, Noguchi S (2015) PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat 150:299–307. https://doi.org/10.1007/s10549-015-3322-6

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for writing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and review of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeffrey Peppercorn.

Ethics declarations

Conflict of interest

The following authors declare financial relationships, none directly related to the work submitted: Jeffrey Peppercorn reports a family member employed by GSK. Arielle Medford has consulted for Guardant Health, Illumina, and Natera. Laura Spring has received research funding from Merck, Phillips, and Eli Lilly, and has consulted for Novartis and Puma. Steven J Isakoff has received research funding from Abbvie, Astra Zeneca, Genentech, Merck, and OncoPep, and has consulted for Seattle Genetics, Novartis, Paxman, and Puma, and reports a family member employed by Merus NV. Aditya Bardia has consulted for Pfizer, Novartis, Genentech, Merck, Radius Health, Immunomedics/Gilead, Sanofi, Daiichi Pharma/Astra Zeneca, Phillips, Eli Lilly, Foundation Medicine and he reports research funding from Genentech, Novartis, Pfizer, Merck, Sanofi, Radius Health, Immunomedics/Gilead, Daiichi Pharma/Astra Zeneca, and Eli Lilly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Medford, A., Spring, L. et al. Searching for the “Holy Grail” of breast cancer recurrence risk: a narrative review of the hunt for a better biomarker and the promise of circulating tumor DNA (ctDNA). Breast Cancer Res Treat 205, 211–226 (2024). https://doi.org/10.1007/s10549-024-07253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-024-07253-6

Keywords

Navigation