Skip to main content

Advertisement

Log in

Adolescent intake of animal fat and red meat in relation to premenopausal mammographic density

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Adolescence is hypothesized to be a time period of particular susceptibility to breast cancer risk factors. Red meat and fat intake during high school was positively associated with risk of breast cancer among premenopausal women in the Nurses’ Health Study II (NHSII). High mammographic density is a strong predictor of breast cancer risk but there is limited research on dietary factors associated with breast density. To test the hypothesis that high intake of animal fat or red meat during adolescence is associated with mammographic density, we analyzed data from premenopausal women in the NHSII. Participants recalled adolescent diet on a high school food frequency questionnaire. We assessed absolute and percent mammographic density on digitized analog film mammograms for 687 premenopausal women with no history of cancer. We used generalized linear regression to quantify associations of adolescent animal fat and red meat intake with mammographic density, adjusting for age, body mass index, and other predictors of mammographic density. Adolescent animal fat intake was significantly positively associated with premenopausal mammographic density, with a mean percent density of 39.2 % in the lowest quartile of adolescent animal fat intake versus 43.1 % in the highest quartile (p trend: 0.03). A non-significant positive association was also observed for adolescent red meat intake (p trend: 0.14). These findings suggest that higher adolescent animal fat intake is weakly associated with percent mammographic density in premenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Biro FM, Deardorff J (2013) Identifying opportunities for cancer prevention during preadolescence and adolescence: puberty as a window of susceptibility. J Adolesc Health 52(5 Suppl):019

    Google Scholar 

  2. Colditz GA, Frazier AL (1995) Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomark Prev 4(5):567–571

    CAS  Google Scholar 

  3. Berkey CS, Frazier AL, Gardner JD, Colditz GA (1999) Adolescence and breast carcinoma risk. Cancer 85(11):2400–2409

    Article  CAS  PubMed  Google Scholar 

  4. Mahabir S (2012) Association between diet during preadolescence and adolescence and risk for Breast Cancer During Adulthood. J Adolesc Health 8(12):00352–00357

    Google Scholar 

  5. Frazier AL, Ryan C, Rockett H, Willett W, Colditz G (2003) Adolescent diet and risk of breast cancer. Breast Cancer Res 5(3):R59–R64

    Article  PubMed Central  PubMed  Google Scholar 

  6. Nimptsch K, Bernstein AM, Giovannucci E, Fuchs CS, Willett WC, Wu K (2013) Dietary intakes of red meat, poultry, and fish during high school and risk of colorectal adenomas in women. Am J Epidemiol 178(2):172–183

    Article  PubMed Central  PubMed  Google Scholar 

  7. Zhao Y, Tan Y, Aupperlee M, Langohr I, Kirk E, Troester M, Schwartz R, Haslam S (2013) Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res 15(5):R100

    Article  PubMed Central  PubMed  Google Scholar 

  8. Linos E, Willett WC, Cho E, Frazier L (2010) Adolescent diet in relation to breast cancer risk among premenopausal women. Cancer Epidemiol Biomark Prev 19(3):689–696

    Article  CAS  Google Scholar 

  9. Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC (2015) Adolescent meat intake and breast cancer risk. Int J Cancer 136(8):1909–1920

    Article  CAS  PubMed  Google Scholar 

  10. McCormack VA, Silva IDS (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169

    Article  Google Scholar 

  11. Boyd NF, Martin LJ, Yaffe MJ, Minkin S (2011) Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 13(6):223

    Article  PubMed Central  PubMed  Google Scholar 

  12. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA (2007) Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev 16(1):43–49

    Article  Google Scholar 

  13. Lindgren J, Dorgan J, Savage-Williams J, Coffman D, Hartman T (2013) Diet across the lifespan and the association with breast density in adulthood. Int J Breast Cancer 2013:808317

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, Huang Y, Couch FJ, Kushi LH, Cerhan JR (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166(4):456–464

    Article  CAS  PubMed  Google Scholar 

  15. Tseng M, Olufade TO, Evers KA, Byrne C (2011) Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women. Nutr Cancer 63(3):342–349

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dorgan JF, Liu L, Klifa C, Hylton N, Shepherd JA, Stanczyk FZ, Snetselaar LG, Van Horn L, Stevens VJ, Robson A et al (2010) Adolescent diet and subsequent serum hormones, breast density, and bone mineral density in young women: results of the Dietary Intervention Study in Children follow-up study. Cancer Epidemiol Biomark Prev 19(6):1545–1556

    Article  CAS  Google Scholar 

  17. Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5(5):388–396

    Article  CAS  PubMed  Google Scholar 

  18. Eliassen AH, Spiegelman D, Xu X, Keefer LK, Veenstra TD, Barbieri RL, Willett WC, Hankinson SE, Ziegler RG (2012) Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among premenopausal women. Cancer Res 72(3):696–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bertrand KA, Eliassen AH, Hankinson SE, Gierach GL, Xu X, Rosner B, Ziegler RG, Tamimi RM (2012) Urinary estrogens and estrogen metabolites and mammographic density in premenopausal women. Breast Cancer Res Treat 136(1):277–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Linos E, Willett WC, Cho E, Colditz G, Frazier LA (2008) Red meat consumption during adolescence among premenopausal women and risk of breast cancer. Cancer Epidemiol Biomark Prev 17(8):2146–2151

    Article  Google Scholar 

  21. Maruti SS, Feskanich D, Colditz GA, Frazier AL, Sampson LA, Michels KB, Hunter DJ, Spiegelman D, Willett WC (2005) Adult recall of adolescent diet: reproducibility and comparison with maternal reporting. Am J Epidemiol 161(1):89–97

    Article  PubMed Central  PubMed  Google Scholar 

  22. Maruti SS, Feskanich D, Rockett HR, Colditz GA, Sampson LA, Willett WC (2006) Validation of adolescent diet recalled by adults. Epidemiology 17(2):226–229

    Article  PubMed  Google Scholar 

  23. Maruti SS, Feskanich D, Colditz GA, Frazier AL, Sampson LA, Michels KB, Hunter DJ, Spiegelman D, Willett WC (2005) Adult recall of adolescent diet: reproducibility and comparison with maternal reporting. Am J Epidemiol 161(1):89–97

    Article  PubMed Central  PubMed  Google Scholar 

  24. U.S. Department of Agriculture, Agricultural Research Service (2001) USDA National Nutrient Database for Standard Reference, Release 14. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/nea/bhnrc/ndl

  25. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S–1228S

    CAS  PubMed  Google Scholar 

  26. Linos E, Willett W (2009) Meat, dairy, and breast cancer: do we have an answer? Am J Clin Nutr 90(3):455–456

    Article  CAS  PubMed  Google Scholar 

  27. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42(1):121–130

    Article  CAS  PubMed  Google Scholar 

  28. Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G (2003) Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst 95(1):30–37

    Article  CAS  PubMed  Google Scholar 

  29. Chlebowski RT, Hendrix SL, Langer RD et al (2003) Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the women’s health initiative randomized trial. JAMA 289(24):3243–3253

    Article  CAS  PubMed  Google Scholar 

  30. Lundström E, Christow A, Kersemaekers W, Svane G, Azavedo E, Söderqvist G, Mol-Arts M, Barkfeldt J, von Schoultz B (2002) Effects of tibolone and continuous combined hormone replacement therapy on mammographic breast density. Am J Obstet Gynecol 186(4):717–722

    Article  PubMed  Google Scholar 

  31. Cuzick J, Warwick J, Pinney E, Warren RML, Duffy SW (2004) Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst 96(8):621–628

    Article  CAS  PubMed  Google Scholar 

  32. Boyd NF, Lockwood GA, Greenberg CV, Martin LJ, Tritchler DL (1997) Effects of a low-fat high-carbohydrate diet on plasma sex hormones in premenopausal women: results from a randomized controlled trial. Canadian Diet and Breast Cancer Prevention Study Group. Br J Cancer 76(1):127–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A, Overvad K, Gronbaek H, Tjonneland A, Halkjaer J, Dossus L et al (2009) The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev 18(5):1333–1340

    Article  CAS  Google Scholar 

  34. Holmes MD, Pollak MN, Willett WC, Hankinson SE (2002) Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomark Prev 11(9):852–861

    CAS  Google Scholar 

  35. Kerver JM, Gardiner JC, Dorgan JF, Rosen CJ, Velie EM (2010) Dietary predictors of the insulin-like growth factor system in adolescent females: results from the Dietary Intervention Study in Children (DISC). Am J Clin Nutr 91(3):643–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Vrieling A, Voskuil DW, Bueno de Mesquita HB, Kaaks R, van Noord PA, Keinan-Boker L, van Gils CH, Peeters PH (2004) Dietary determinants of circulating insulin-like growth factor (IGF)-I and IGF binding proteins 1, -2 and -3 in women in the Netherlands. Cancer Causes Control 15(8):787–796

    Article  PubMed  Google Scholar 

  37. Wu AH, Pike MC, Stram DO (1999) Meta-analysis: dietary fat intake, serum estrogen levels, and the risk of breast cancer. J Natl Cancer Inst 91(6):529–534

    Article  CAS  PubMed  Google Scholar 

  38. Frazier AL, Willett WC, Colditz GA (1995) Reproducibility of recall of adolescent diet: nurses’ Health Study (United States). Cancer Causes Control 6(6):499–506

    Article  CAS  PubMed  Google Scholar 

  39. Chavarro JE, Rosner BA, Sampson L, Willey C, Tocco P, Willett WC, Chumlea WC, Michels KB (2009) Validity of adolescent diet recall 48 years later. Am J Epidemiol 170(12):1563–1570

    Article  PubMed Central  PubMed  Google Scholar 

  40. Malik VS, Fung TT, van Dam RM, Rimm EB, Rosner B, Hu FB (2012) Dietary patterns during adolescence and risk of type 2 diabetes in middle-aged women. Diabetes Care 35(1):12–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li T, Sun LM, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomark Prev 14(2):343–349

    Article  Google Scholar 

  42. Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11(7):653–662

    Article  CAS  PubMed  Google Scholar 

  43. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6(10):798–808

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Barbara DeSouza, Divya Prithviraj, and Ellen Hertzmark for their assistance with data collection and analysis. This work was supported by the Breast Cancer Research Foundation and the National Cancer Institute (UM1 CA176726, R01 CA124865, R01 CA67262, and R01 CA50385). KAB was supported by the Simeon J. Fortin Charitable Foundation Fellowship, Bank of America, N.A., Co-Trustee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Bertrand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Kimberly A. Bertrand and Rosemarie A. Burian have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, K.A., Burian, R.A., Eliassen, A.H. et al. Adolescent intake of animal fat and red meat in relation to premenopausal mammographic density. Breast Cancer Res Treat 155, 385–393 (2016). https://doi.org/10.1007/s10549-016-3679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3679-1

Keywords

Navigation