Skip to main content

Advertisement

Log in

Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Endocrine therapy (ET) is the most commonly administered first-line systemic therapy for estrogen receptor-positive (ER+) metastatic breast cancer (MBC). Manipulation of hormone levels was one of the earliest ET approaches. However, treatment modalities have since evolved with the growing understanding of estrogen biosynthesis and ER biology. The current armamentarium of ET includes selective estrogen receptor modulation, aromatase inhibition, and selective estrogen receptor downregulation. However, intrinsic or acquired resistance to ET is frequently observed. Significant strides have been made in recent years in our understanding of the mechanisms of resistance to ET, and several targeted approaches including inhibitors against the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway and cyclin-dependent kinase 4/6 (CDK4/6) have shown great promise. The mTOR inhibitor, everolimus, is already in clinical use for the treatment of resistant ER+MBC. However, multiple levels of evidence indicate that ER signaling remains as an important therapeutic target even in the resistance setting, providing the rationale for sequencing multiple lines and combinations of ET. In addition, recurrent mutations in estrogen receptor 1 (ESR1), the gene that encodes the ER, have been identified in the genomic studies of metastatic ER+ breast cancer. ESR1 mutations are an important mechanism for acquired resistance, and effective ER targeting in this setting is particularly important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AIs:

Aromatase inhibitors

CDK:

Cyclin-dependent kinase

CBR:

Clinical benefit rate

ER+:

Estrogen receptor-positive

ERG:

Estrogen-responsive genes

ESR1:

Estrogen receptor 1

ET:

Endocrine therapy

FAK:

Focal adhesion kinase

GF:

Growth factor

GnRH:

Gonadotropin-releasing hormone

HER:

Human epidermal growth-factor receptor

IM:

Intramuscular

JNK:

c-Jun N-terminal kinase

LD:

Loading dose

MBC:

Metastatic breast cancer

mTOR:

Mammalian target of rapamycin

mTORc1:

Mammalian target of rapamycin complex 1

mTORc2:

Mammalian target of rapamycin complex 2

ORR:

Objective response rate

OS:

Overall survival

PDX:

Patient-derived xenograft

PFS:

Progression-free survival

PI3K:

Phosphatidylinositol 3-kinase

PI3KCA:

PI3K alpha catalytic subunit

RB1:

Retinoblastoma susceptibility

RTK:

Receptor tyrosine kinase

SERMS:

Selective estrogen receptor modulators

SWOG:

Southwest Oncology Group

TTP:

Time to progression

References

  1. Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR (2005) Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol 123(1):21–27

    Article  PubMed  Google Scholar 

  2. Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 365(9472):1687–1717

    Article  Google Scholar 

  3. Brewster AM, Hortobagyi GN, Broglio KR et al (2008) Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 100(16):1179–1183

    Article  PubMed  Google Scholar 

  4. National Comprehensive Cancer Network (2014) Clinical practice guidelines in oncology. Breast cancer. v. 3. http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 22 Dec 2014

  5. Burstein HJ, Prestrud AA, Seidenfeld J et al (2010) American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol 28(23):3784–3796

    Article  PubMed  Google Scholar 

  6. Madak-Erdogan Z, Kieser KJ, Kim SH et al (2008) Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol Endocrinol 22(9):2116–2127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23(8):1616–1622

    Article  CAS  PubMed  Google Scholar 

  8. Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Patani N, Martin LA (2014) Understanding response and resistance to oestrogen deprivation in ER-positive breast cancer. Mol Cell Endocrinol 382(1):683–694

    Article  CAS  PubMed  Google Scholar 

  10. Kushner PJ, Agard DA, Greene GL et al (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74(5):311–317

    Article  CAS  PubMed  Google Scholar 

  11. Ma CX, Ellis MJ (2013) The Cancer Genome Atlas: clinical applications for breast cancer. Oncology (Williston Park) 27(12):1263–1269

    Google Scholar 

  12. Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Levin ER (2001) Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol (1985) 91(4):1860–1867

    CAS  Google Scholar 

  14. Shou J, Massarweh S, Osborne CK et al (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96(12):926–935

    Article  CAS  PubMed  Google Scholar 

  15. de Mora JF, Brown M (2000) AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20(14):5041–5047

    Article  Google Scholar 

  16. Beatson GT (1896) On the treatment of inoperable cases of carcinoma in mamma: suggestion for new method of treatment with illustrative cases. The Lancet 148(3802):104–107

    Article  Google Scholar 

  17. Love RR, Philips J (2002) Oophorectomy for breast cancer: history revisited. J Natl Cancer Inst 94(19):1433–1434

    Article  PubMed  Google Scholar 

  18. Buzdar AU, Hortobagyi G (1998) Update on endocrine therapy for breast cancer. Clin Cancer Res 4(3):527–534

    CAS  PubMed  Google Scholar 

  19. Sakamoto T, Eguchi H, Omoto Y et al (2002) Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol Cell Endocrinol 192(1–2):93–104

    Article  CAS  PubMed  Google Scholar 

  20. Miller WR, Bartlett JM, Canney P, Verrill M (2007) Hormonal therapy for postmenopausal breast cancer: the science of sequencing. Breast Cancer Res Treat 103(2):149–160

    Article  CAS  PubMed  Google Scholar 

  21. Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The Lancet 378(9793):771–784

    Article  CAS  Google Scholar 

  22. Davies C, Pan H, Godwin J et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. The Lancet 381(9869):805–816

    Article  CAS  Google Scholar 

  23. Gray RG, Rea D, Handley K et al (2013) aTTom: Longterm effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer [abstract]. J Clin Oncol 31(suppl 5):5

    Google Scholar 

  24. Francis PA, Regan MM, Fleming GF et al (2015) Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med 372(5):436–446

    Article  CAS  PubMed  Google Scholar 

  25. Pagani O, Regan MM, Walley BA et al (2014) Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 371(2):107–118

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chojecki A, Wong S, Toppmeyer D (2014) Optimal management of the premenopausal patient with estrogen receptor-positive breast cancer. Am Soc Clin Oncol Educ Book 34:e12–e15

    Article  Google Scholar 

  27. Lonning PE, Eikesdal HP (2013) Aromatase inhibition 2013: clinical state of the art and questions that remain to be solved. Endocr Relat Cancer 20(4):R183–R201

    Article  PubMed Central  PubMed  Google Scholar 

  28. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348(24):2431–2442

    Article  CAS  PubMed  Google Scholar 

  29. Miller WR (2004) Biological rationale for endocrine therapy in breast cancer. Best Pract Res Clin Endocrinol Metab 18(1):1–32

    Article  CAS  PubMed  Google Scholar 

  30. Buzdar AU, Robertson JF, Eiermann W, Nabholtz J-M (2002) An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane. Cancer 95(9):2006–2016

    Article  CAS  PubMed  Google Scholar 

  31. Goss PE, Ingle JN, Pritchard KI et al (2013) Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27–a randomized controlled phase III trial. J Clin Oncol 31(11):1398–1404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Miller WR, Bartlett J, Brodie AMH et al (2008) Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter? The Oncologist 13(8):829–837

    Article  CAS  PubMed  Google Scholar 

  33. Lonning PE (2009) Lack of complete cross-resistance between different aromatase inhibitors; a real finding in search for an explanation? Eur J Cancer 45(4):527–535

    Article  CAS  PubMed  Google Scholar 

  34. Nabholtz JM, Buzdar A, Pollak M, Arimidex Study Group et al (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. J Clin Oncol 18(22):3758–3767

    CAS  PubMed  Google Scholar 

  35. Bonneterre J, Buzdar A, Nabholtz J-MA et al (2001) Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer 92(9):2247–2258

    Article  CAS  PubMed  Google Scholar 

  36. Mouridsen H, Gershanovich M, Sun Y et al (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19(10):2596–2606

    CAS  PubMed  Google Scholar 

  37. Paridaens RJ, Dirix LY, Beex LV et al (2008) Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J Clin Oncol 26(30):4883–4890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mauri D, Pavlidis N, Polyzos NP, Ioannidis JP (2006) Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst 98(18):1285–1291

    Article  CAS  PubMed  Google Scholar 

  39. Vergote I, Bonneterre J, Thurlimann B et al (2000) Randomised study of anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women. Eur J Cancer 36(suppl 4):S84–S85

    Article  CAS  PubMed  Google Scholar 

  40. Milla-Santos A, Milla L, Portella J et al (2003) Anastrozole versus tamoxifen as first-line therapy in postmenopausal patients with hormone-dependent advanced breast cancer: a prospective, randomized, phase III study. Am J Clin Oncol 26(3):317–322

    CAS  PubMed  Google Scholar 

  41. Muss HB (2014) Adjuvant chemotherapy in older women with breast cancer: who and what? J Clin Oncol 32(19):1996–2000

    Article  CAS  PubMed  Google Scholar 

  42. Pan K, Chlebowski RT (2014) Adjuvant endocrine therapy of perimenopausal and recently postmenopausal women with hormone receptor-positive breast cancer. Clin Breast Cancer 14(3):147–153

    Article  CAS  PubMed  Google Scholar 

  43. Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ (2014) Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 382(1):695–723

    Article  CAS  PubMed  Google Scholar 

  44. Johnston SR, Yeo B (2014) The optimal duration of adjuvant endocrine therapy for early stage breast cancer–with what drugs and for how long? Curr Oncol Rep 16(1):358

    Article  PubMed  Google Scholar 

  45. Rao RD, Cobleigh MA (2012) Adjuvant endocrine therapy for breast cancer. Oncology (Williston Park) 26(6): 541–547, 550, 552

  46. Osborne CK, Wakeling A, Nicholson RI (2004) Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90(suppl 1):S2–S6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51(15):3867–3873

    CAS  PubMed  Google Scholar 

  48. Robertson JFR (2007) Fulvestrant (Faslodex®)—how to make a good drug better. The Oncologist 12(7):774–784

    Article  CAS  PubMed  Google Scholar 

  49. Kuter I, Gee JM, Hegg R et al (2012) Dose-dependent change in biomarkers during neoadjuvant endocrine therapy with fulvestrant: results from NEWEST, a randomized Phase II study. Breast Cancer Res Treat 133(1):237–246

    Article  CAS  PubMed  Google Scholar 

  50. Di Leo A, Jerusalem G, Petruzelka L et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28(30):4594–4600

    Article  PubMed  Google Scholar 

  51. Di Leo A, Jerusalem G, Petruzelka L et al (2014) Final overall survival: fulvestrant 500 mg vs 250 mg in the randomized CONFIRM trial. J Natl Cancer Inst 106(1):djt337

    Article  PubMed Central  PubMed  Google Scholar 

  52. Osborne CK, Pippen J, Jones SE et al (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20(16):3386–3395

    Article  CAS  PubMed  Google Scholar 

  53. Howell A, Robertson JFR, Quaresma Albano J et al (2002) Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20(16):3396–3403

    Article  CAS  PubMed  Google Scholar 

  54. Robertson JF, Osborne CK, Howell A et al (2003) Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: a prospective combined analysis of two multicenter trials. Cancer 98(2):229–238

    Article  CAS  PubMed  Google Scholar 

  55. Chia S, Gradishar W, Mauriac L et al (2008) Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26(10):1664–1670

    Article  CAS  PubMed  Google Scholar 

  56. Johnston SR, Kilburn LS, Ellis P et al (2013) Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. Lancet Oncol 14(10):989–998

    Article  CAS  PubMed  Google Scholar 

  57. Robertson JFR, Llombart-Cussac A, Rolski J et al (2009) Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J Clin Oncol 27(27):4530–4535

    Article  CAS  PubMed  Google Scholar 

  58. Robertson JFR, Lindemann JPO, Llombart-Cussac A et al (2012) Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: follow-up analysis from the randomized ‘FIRST’ study. Breast Cancer Res Treat 136(2):503–511

    Article  CAS  PubMed  Google Scholar 

  59. Robertson JFR, Llombart-Cussac A, Feltl D et al (2014) Fulvestrant 500 mg versus anastrozole as firstline treatment for advanced breast cancer: overall survival from the phase II ‘first’ study. Abstract presented at the 36th Annual San Antonio Breast Cancer Conference; December 10–14, San Antonio

  60. Clinical Trials.gov Web site (2013) A global study to compare the effects of fulvestrant and arimidex in a subset of patients with breast cancer. (FALCON). http://www.clinicaltrials.gov/ct2/show/NCT01602380. Accessed 2 Oct 2013

  61. Brodie A, Sabnis G, Jelovac D (2006) Aromatase and breast cancer. J Steroid Biochem Mol Biol 102(1–5):97–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bergh J, Jonsson P-E, Lidbrink EK et al (2012) FACT: An open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30(16):1919–1925

    Article  CAS  PubMed  Google Scholar 

  63. Mehta RS, Barlow WE, Albain KS et al (2012) Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367(5):435–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. ClinicalTrials.gov Web site (2014) Fulvestrant and/or anastrozole in treating postmenopausal patients with Stage II-III breast cancer undergoing surgery. http://clinicaltrials.gov/ct2/show/NCT01953588. Accessed 1 Apr 2014

  65. Bedard PL, Freedman OC, Howell A, Clemons M (2008) Overcoming endocrine resistance in breast cancer: are signal transduction inhibitors the answer? Breast Cancer Res Treat 108(3):307–317

    Article  CAS  PubMed  Google Scholar 

  66. Miller WR, Larionov AA (2012) Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Res 14(1):201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Knudsen S, Jensen T, Hansen A et al (2014) Development and validation of a gene expression score that predicts response to fulvestrant in breast cancer patients. PLoS One 9(2):e87415

    Article  PubMed Central  PubMed  Google Scholar 

  68. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192

    Article  CAS  PubMed  Google Scholar 

  69. Chow LM, Baker SJ (2006) PTEN function in normal and neoplastic growth. Cancer Lett 241(2):184–196

    Article  CAS  PubMed  Google Scholar 

  70. Katso R, Okkenhaug K, Ahmadi K et al (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Article  CAS  PubMed  Google Scholar 

  71. Fry MJ (2001) Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res 3(5):304–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Roymans D, Slegers H (2001) Phosphatidylinositol 3-kinases in tumor progression. Eur J Biochem 268(3):487–498

    Article  CAS  PubMed  Google Scholar 

  73. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562

    Article  CAS  PubMed  Google Scholar 

  74. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    Article  CAS  PubMed  Google Scholar 

  76. Ellis MJ, Lin L, Crowder R et al (2010) Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 119(2):379–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Bachman KE, Argani P, Samuels Y et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3(8):772–775

    Article  CAS  PubMed  Google Scholar 

  78. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  79. Faridi J, Wang L, Endemann G, Roth RA (2003) Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin Cancer Res 9(8):2933–2939

    CAS  PubMed  Google Scholar 

  80. Campbell RA, Bhat-Nakshatri P, Patel NM et al (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276(13):9817–9824

    Article  CAS  PubMed  Google Scholar 

  81. Clark AS, West K, Streicher S, Dennis PA (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1(9):707–717

    CAS  PubMed  Google Scholar 

  82. Miller TW, Hennessy BT, Gonzalez-Angulo AM et al (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120(7):2406–2413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Ma CX, Crowder RJ, Ellis MJ (2011) Importance of PI3-kinase pathway in response/resistance to aromatase inhibitors. Steroids 76(8):750–752

    Article  CAS  PubMed  Google Scholar 

  84. Bachelot T, Bourgier C, Cropet C et al (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30(22):2718–2724

    Article  CAS  PubMed  Google Scholar 

  85. Yardley DA, Noguchi S, Pritchard KI et al (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30(10):870–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Piccart M, Hortobagyi GN, Campone M et al (2014) Everolimus plus exemestane for hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer (BC): overall survival results from BOLERO-2 [abstract]. Eur J Cancer 50(suppl 3):S1 (Abstract 1LBA)

    Article  Google Scholar 

  87. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  PubMed  Google Scholar 

  88. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562

    Article  CAS  PubMed  Google Scholar 

  89. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 29(33):4452–4461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Pacheco JM, Ma CX (2013) PI3K Inhibitors in breast cancer treatment. May 7, 2013. http://www.targetedonc.com/publications/targeted-therapies-cancer/2013/april-2013/PI3K-Inhibitors-in-Breast-Cancer-Treatment. Accessed April 1, 2014

  92. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  93. Altucci L, Addeo R, Cicatiello L et al (1997) Estrogen induces early and timed activation of cyclin-dependent kinases 4, 5, and 6 and increases cyclin messenger ribonucleic acid expression in rat uterus. Endocrinology 138(3):978–984

    CAS  PubMed  Google Scholar 

  94. Geum D, Sun W, Paik SK, Lee CC, Kim K (1997) Estrogen-induced cyclin D1 and D3 gene expressions during mouse uterine cell proliferation in vivo: differential induction mechanism of cyclin D1 and D3. Mol Reprod Dev 46(4):450–458

    Article  CAS  PubMed  Google Scholar 

  95. Said TK, Conneely OM, Medina D, O’Malley BW, Lydon JP (1997) Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology 138(9):3933–3939

    CAS  PubMed  Google Scholar 

  96. Tong W, Pollard JW (1999) Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. Mol Cell Biol 19(3):2251–2264

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Watts CK, Brady A, Sarcevic B et al (1995) Antiestrogen inhibition of cell cycle progression in breast cancer cells in associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol Endocrinol 9(12):1804–1813

    CAS  PubMed  Google Scholar 

  98. Lukas J, Bartkova J, Bartek J (1996) Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 16(12):6917–6925

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272(16):10882–10894

    Article  CAS  PubMed  Google Scholar 

  100. Thangavel C, Dean JL, Ertel A et al (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18(3):333–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Finn RS, Dering J, Conklin D et al (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77

    Article  PubMed Central  PubMed  Google Scholar 

  102. Finn RS, Crown JP, Lang I et al (2012) Results of a randomized phase 2 study of PD 0332991, a cyclin-dependent kinase (CDK) 4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/HER2- advanced breast cancer (BC) [abstract]. Cancer Res 72(24 suppl):91S (Abstract S1-6)

    Google Scholar 

  103. Finn RS, Crown JP, Lang I et al (2014) Final results of a randomized Phase II study of PD 0332991, a cyclin-dependent kinase (CDK)-4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/HER2- advanced breast cancer (PALOMA-1; TRIO-18). Abstract presented at: 105th Annual Meeting of the American Association for Cancer Research. San Diego, April 5–9 2014

  104. Pfizer Receives U.S. (2015) FDA accelerated approval of IBRANCE® (palbociclib). http://www.pfizer.com/news/press-release/press-release-detail/pfizer_receives_u_s_fda_accelerated_approval_of_ibrance_palbociclib. Accessed 5 Feb 2015

  105. Weis KE, Ekena K, Thomas JA, Lazennec G, Katzenellenbogen BS (1996) Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 10(11):1388–1398

    CAS  PubMed  Google Scholar 

  106. Toy W, Shen Y, Won H et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Li S, Shen D, Shao J et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4(6):1116–1130

    Article  CAS  PubMed  Google Scholar 

  108. Shao J, Li S, Crowder RJ et al (2013) Patient-derived xenograft study reveals endocrine therapy resistance of ER+ breast cancer caused by distinct ESR1 gene aberrations. Presented at: 36th Annual San Antonio Breast Cancer Conference. San Antonio, Dec 10–14 2013

  109. Jeselsohn R, Yelensky R, Buchwalter G et al (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20(7):1757–1767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors independently created the initial draft of the manuscript. Editorial services were provided by SCI Scientific Communications & Information, Parsippany, NJ. Funding was provided by AstraZeneca LP.

Conflict of interest

Gayathri Nagaraj, MD, reported no disclosures. Cynthia Ma, MD, PhD, is a consultant/advisory role for Novartis and receives funding from Novartis, Puma, and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri Nagaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, G., Ma, C. Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat 150, 231–242 (2015). https://doi.org/10.1007/s10549-015-3316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3316-4

Keywords

Navigation