Skip to main content

Advertisement

Log in

Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Estrogen receptor-positive (ER +) breast cancer accounts for approximately 75% of all breast cancers. Endocrine therapies, including selective ER modulators (SERMs), aromatase inhibitors (AIs), and selective ER down-regulators (SERDs) provide substantial clinical benefit by reducing the risk of disease recurrence and mortality. However, resistance to endocrine therapies represents a major challenge, limiting the success of ER + breast cancer treatment. Mechanisms of endocrine resistance involve alterations in ER signaling via modulation of ER (e.g., ER downregulation, ESR1 mutations or fusions); alterations in ER coactivators/corepressors, transcription factors (TFs), nuclear receptors and epigenetic modulators; regulation of signaling pathways; modulation of cell cycle regulators; stress signaling; and alterations in tumor microenvironment, nutrient stress, and metabolic regulation. Current therapeutic strategies to improve outcome of endocrine-resistant patients in clinics include inhibitors against mechanistic target of rapamycin (mTOR), cyclin-dependent kinase (CDK) 4/6, and the phosphoinositide 3-kinase (PI3K) subunit, p110α. Preclinical studies reveal novel therapeutic targets, some of which are currently tested in clinical trials as single agents or in combination with endocrine therapies, such as ER partial agonists, ER proteolysis targeting chimeras (PROTACs), next-generation SERDs, AKT inhibitors, epidermal growth factor receptor 1 and 2 (EGFR/HER2) dual inhibitors, HER2 targeting antibody-drug conjugates (ADCs) and histone deacetylase (HDAC) inhibitors. In this review, we summarize the established and emerging mechanisms of endocrine resistance, alterations during metastatic recurrence, and discuss the approved therapies and ongoing clinical trials testing the combination of novel targeted therapies with endocrine therapy in endocrine-resistant ER + breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68:394–424

  2. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A et al (2019) Breast cancer statistics, 2019. CA: a cancer journal for clinicians 69:438–451

  3. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643

    Article  CAS  PubMed  Google Scholar 

  4. Theodorou V, Stark R, Menon S, Carroll JS (2013) GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res 23:12–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Safe S, Kim K (2008) Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 41:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    Article  CAS  PubMed  Google Scholar 

  7. Lonard DM, O’Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125:411–414

    Article  CAS  PubMed  Google Scholar 

  8. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340–352

    Article  CAS  PubMed  Google Scholar 

  9. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  10. McDonnell DP, Norris JD (2002) Connections and regulation of the human estrogen receptor. Science 296:1642–1644

    Article  CAS  PubMed  Google Scholar 

  11. Early Breast Cancer Trialists' Collaborative G, Davies C, Godwin J, Gray R, Clarke M, Cutter D et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

  12. DeCensi A, Puntoni M, Guerrieri-Gonzaga A, Caviglia S, Avino F, Cortesi L et al (2019) Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Local and Contralateral Recurrence in Breast Intraepithelial Neoplasia. Am J Clin Oncol: official journal of the American Society of Clinical Oncology:JCO1801779

  13. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A et al (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 19:2596–2606

    Article  CAS  Google Scholar 

  15. Lumachi F, Santeufemia DA, Basso SM (2015) Current medical treatment of estrogen receptor-positive breast cancer. World J Biol Chem 6:231–239

    Article  PubMed  PubMed Central  Google Scholar 

  16. Howell A, Robertson JF, Abram P, Lichinitser MR, Elledge R, Bajetta E et al (2004) Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. Journal of clinical oncology : official Am J Clin Oncol 22:1605–1613

    Article  CAS  Google Scholar 

  17. Vergote I, Robertson JF (2004) Fulvestrant is an effective and well-tolerated endocrine therapy for postmenopausal women with advanced breast cancer: results from clinical trials. Br J Cancer 90 Suppl 1:S11–14.

  18. Augereau P, Patsouris A, Bourbouloux E, Gourmelon C, Abadie Lacourtoisie S, Berton Rigaud D et al (2017) Hormonoresistance in advanced breast cancer: a new revolution in endocrine therapy. Therapeutic advances in medical oncology 9:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC et al (2005) Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. Journal of clinical oncology : official Am J Clin Oncol 23:2469–2476

    Article  CAS  Google Scholar 

  20. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    CAS  PubMed  Google Scholar 

  21. Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM et al (2000) Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894

    CAS  PubMed  Google Scholar 

  22. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P et al (2012) Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene 31:3223–3234

    Article  CAS  PubMed  Google Scholar 

  23. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45:1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM et al (2017) Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discov 7:277–287

    Article  CAS  PubMed  Google Scholar 

  25. Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S (2018) Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 18:377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merenbakh-Lamin K, Ben-Baruch N, Yeheskel A, Dvir A, Soussan-Gutman L, Jeselsohn R et al (2013) D538G mutation in estrogen receptor-alpha: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res 73:6856–6864

    Article  CAS  PubMed  Google Scholar 

  27. Harrod A, Fulton J, Nguyen VTM, Periyasamy M, Ramos-Garcia L, Lai CF et al (2017) Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36:2286–2296

    Article  CAS  PubMed  Google Scholar 

  28. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A (2018) Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 33:173–186 e175

  29. Arnesen S, Blanchard Z, Williams MM, Berrett KC, Li Z, Oesterreich S et al (2021) Estrogen Receptor Alpha Mutations in Breast Cancer Cells Cause Gene Expression Changes through Constant Activity and Secondary Effects. Cancer Res 81:539–551

    Article  CAS  PubMed  Google Scholar 

  30. Fanning SW, Greene GL (2019) Next-generation ERalpha inhibitors for endocrine-resistant ER+ breast cancer. Endocrinology 160:759–769

    Article  CAS  PubMed  Google Scholar 

  31. Bardia A, Kaklamani V, Wilks S, Weise A, Richards D, Harb W et al (2021) Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative advanced breast cancer. Journal of clinical oncology : official Am J Clin Oncol 39:1360–1370

    Article  Google Scholar 

  32. Lim E, Jhaveri KL, Perez-Fidalgo JA, Bellet M, Boni V, Perez Garcia JM et al (2020) A phase Ib study to evaluate the oral selective estrogen receptor degrader GDC-9545 alone or combined with palbociclib in metastatic ER-positive HER2-negative breast cancer. Am J Clin Oncol 38, no. 15_suppl:1023–1023

  33. Giltnane JM, Hutchinson KE, Stricker TP, Formisano L, Young CD, Estrada MV et al (2017) Genomic profiling of ER(+) breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci Transl Med 9

  34. Hartmaier RJ, Trabucco SE, Priedigkeit N, Chung JH, Parachoniak CA, Vanden Borre P et al (2018) Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann Oncol 29:872–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei JT, Shao J, Zhang J, Iglesia M, Chan DW, Cao J et al (2018) Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep 24:1434–1444 e1437

  36. Veeraraghavan J, Tan Y, Cao XX, Kim JA, Wang X, Chamness GC et al (2014) Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat Commun 5:4577

  37. Li L, Lin L, Veeraraghavan J, Hu Y, Wang X, Lee S et al (2020) Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res 22:84

  38. Jeong JH, Yun JW, Kim HY, Heo CY, Lee S (2021) Elucidation of novel therapeutic targets for breast cancer with ESR1-CCDC170 Fusion. J Clin Med 10

  39. Kushner MH, Ory V, Graham GT, Sharif GM, Kietzman WB, Thevissen S et al (2020) Loss of ANCO1 repression at AIB1/YAP targets drives breast cancer progression. EMBO Rep 21:e48741

  40. De Amicis F, Chiodo C, Morelli C, Casaburi I, Marsico S, Bruno R et al (2019) AIB1 sequestration by androgen receptor inhibits estrogen-dependent cyclin D1 expression in breast cancer cells. BMC Cancer 19:1038

  41. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA et al (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353–361

    Article  CAS  PubMed  Google Scholar 

  42. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M et al (2008) Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456:663–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vareslija D, Ward E, Purcell SP, Cosgrove NS, Cocchiglia S, O’Halloran PJ et al (2021) Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene 40:1318–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ et al (2018) Cancer Stem Cell Phenotypes in ER(+) Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Mol Cancer Res 16:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alkner S, Jensen MB, Rasmussen BB, Bendahl PO, Ferno M, Ryden L et al (2017) Prognostic and predictive importance of the estrogen receptor coactivator AIB1 in a randomized trial comparing adjuvant letrozole and tamoxifen therapy in postmenopausal breast cancer: the Danish cohort of BIG 1–98. Breast Cancer Res Treat 166:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Narbe U, Sjostrom M, Forsare C, Bendahl PO, Alkner S, Leeb-Lundberg LMF et al (2019) The estrogen receptor coactivator AIB1 is a new putative prognostic biomarker in ER-positive/HER2-negative invasive lobular carcinoma of the breast. Breast Cancer Res Treat 175:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McBryan J, Theissen SM, Byrne C, Hughes E, Cocchiglia S, Sande S et al (2012) Metastatic progression with resistance to aromatase inhibitors is driven by the steroid receptor coactivator SRC-1. Cancer Res 72:548–559

    Article  CAS  PubMed  Google Scholar 

  48. Browne AL, Charmsaz S, Vareslija D, Fagan A, Cosgrove N, Cocchiglia S et al (2018) Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene 37:2008–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ward E, Vareslija D, Charmsaz S, Fagan A, Browne AL, Cosgrove N et al (2018) Epigenome-wide SRC-1-mediated gene silencing represses cellular differentiation in advanced breast cancer. Clin Cancer Res 24:3692–3703

    Article  CAS  PubMed  Google Scholar 

  50. Watters RJ, Verdelis K, Lucas PC, Jiang S, Chen Y, Lu F et al (2021) A novel mouse model for SNP in steroid receptor co-activator-1 reveals role in bone density and breast cancer metastasis. Endocrinology 162

  51. Dobrzycka KM, Townson SM, Jiang S, Oesterreich S (2003) Estrogen receptor corepressors – a role in human breast cancer? Endocr Relat Cancer 10:517–536

    Article  CAS  PubMed  Google Scholar 

  52. Legare S, Basik M (2016) Minireview: The link between ERalpha corepressors and histone deacetylases in tamoxifen resistance in breast cancer. Mol Endocrinol 30:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keeton EK, Brown M (2005) Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19:1543–1554

    Article  CAS  PubMed  Google Scholar 

  54. Lu R, Hu X, Zhou J, Sun J, Zhu AZ, Xu X et al (2016) COPS5 amplification and overexpression confers tamoxifen-resistance in ERalpha-positive breast cancer by degradation of NCoR. Nat Commun 7:12044

  55. Girault I, Lerebours F, Amarir S, Tozlu S, Tubiana-Hulin M, Lidereau R et al (2003) Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res 9:1259–1266

    CAS  PubMed  Google Scholar 

  56. Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M et al (2011) A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res 17:2024–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J et al (1993) Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci U S A 90:3685–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mukherjee S, Conrad SE (2005) c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. J Biol Chem 280:17617–17625

    Article  CAS  PubMed  Google Scholar 

  59. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Bragt MP, Hu X, Xie Y, Li Z (2014) RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. Elife 3:e03881

  61. Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T et al (2016) RUNX1 prevents oestrogen-mediated AXIN1 suppression and \(\beta\)-catenin activation in ER-positive breast cancer. Nat Commun 7:10751

  62. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N et al (2018) The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 34:427–438 e426

  63. Fiorito E, Sharma Y, Gilfillan S, Wang S, Singh SK, Satheesh SV et al (2016) CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions. Nucleic Acids Res 44:10588–10602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43:27–33

    Article  CAS  PubMed  Google Scholar 

  65. Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F et al (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 113:E6600–E6609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fu X, Pereira R, De Angelis C, Veeraraghavan J, Nanda S, Qin L et al (2019) FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proc Natl Acad Sci USA 116(52):26826–26834

  67. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE et al (2020) ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet 52:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chia K, Milioli H, Portman N, Laven-Law G, Coulson R, Yong A et al (2019) Non-canonical AR activity facilitates endocrine resistance in breast cancer. Endocr Relat Cancer 26:251–264

    Article  CAS  PubMed  Google Scholar 

  69. D’Amato NC, Gordon MA, Babbs B, Spoelstra NS, Carson Butterfield KT, Torkko KC et al (2016) Cooperative Dynamics of AR and ER Activity in Breast Cancer. Mol Cancer Res 14:1054–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Creevey L, Bleach R, Madden SF, Toomey S, Bane FT, Vareslija D et al (2019) Altered steroid milieu in AI-resistant breast cancer facilitates AR mediated gene-expression associated with poor response to therapy. Mol Cancer Ther 18:1731–1743

    Article  CAS  PubMed  Google Scholar 

  71. Hickey TE, Selth LA, Chia KM, Laven-Law G, Milioli HH, Roden D et al (2021) The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 27:310–320

    Article  CAS  PubMed  Google Scholar 

  72. Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA et al (2015) Progesterone receptor modulates ERalpha action in breast cancer. Nature 523:313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zou Z, Luo X, Nie P, Wu B, Zhang T, Wei Y et al (2016) Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors. Biochem Biophys Res Commun 478:227–233

    Article  CAS  PubMed  Google Scholar 

  75. Raha P, Thomas S, Thurn KT, Park J, Munster PN (2015) Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res 17:26

  76. Sabnis GJ, Goloubeva OG, Kazi AA, Shah P, Brodie AH (2013) HDAC inhibitor entinostat restores responsiveness of letrozole-resistant MCF-7Ca xenografts to aromatase inhibitors through modulation of Her-2. Mol Cancer Ther 12:2804–2816

    Article  CAS  PubMed  Google Scholar 

  77. Zhou Q, Atadja P, Davidson NE (2007) Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther 6:64–69

    Article  CAS  PubMed  Google Scholar 

  78. Linares A, Assou S, Lapierre M, Thouennon E, Duraffourd C, Fromaget C et al (2019) Increased expression of the HDAC9 gene is associated with antiestrogen resistance of breast cancers. Mol Oncol 13:1534–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu S, Gong X, Ma Z, Zhang M, Huang L, Zhang J et al (2020) Endocrine resistant breast cancer cells with loss of ERalpha expression retain proliferative ability by reducing caspase7-mediated HDAC3 cleavage. Cell Oncol (Dordr) 43:65–80

    Article  CAS  Google Scholar 

  80. Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN et al (2018) KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell 34:939–953 e939

  81. Wang J, Duan Z, Nugent Z, Zou JX, Borowsky AD, Zhang Y et al (2016) Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Lett 378:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang J, Zhou C, Jiang H, Liang L, Shi W, Zhang Q et al (2017) ZEB1 induces ER-alpha promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis 8:e2732

  83. Ciana P, Ghisletti S, Mussi P, Eberini I, Vegeto E, Maggi A (2003) Estrogen receptor alpha, a molecular switch converting transforming growth factor-alpha-mediated proliferation into differentiation in neuroblastoma cells. J Biol Chem 278:31737–31744

    Article  CAS  PubMed  Google Scholar 

  84. Lee AV, Cui X, Oesterreich S (2001) Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res 7:4429s-4435s; discussion 4411s-4412s

  85. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Article  CAS  PubMed  Google Scholar 

  86. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  CAS  PubMed  Google Scholar 

  87. Font de Mora J, Brown M (2020) AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20:5041–5047

  88. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  CAS  PubMed  Google Scholar 

  89. Hong SH, Privalsky ML (2000) The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol 20:6612–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ellis MJ, Tao Y, Young O, White S, Proia AD, Murray J et al (2006) Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24:3019–3025

    Article  CAS  Google Scholar 

  91. Fox EM, Miller TW, Balko JM, Kuba MG, Sanchez V, Smith RA et al (2011) A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res 71:6773–6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mao P, Cohen O, Kowalski KJ, Kusiel JG, Buendia-Buendia JE, Cuoco MS et al (2020) Acquired FGFR and FGF Alterations Confer Resistance to Estrogen Receptor (ER) Targeted Therapy in ER(+) Metastatic Breast Cancer. Clin Cancer Res 26:5974–5989

    Article  CAS  PubMed  Google Scholar 

  94. Lupien M, Meyer CA, Bailey ST, Eeckhoute J, Cook J, Westerling T et al (2010) Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance. Genes Dev 24:2219–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Drago JZ, Formisano L, Juric D, Niemierko A, Servetto A, Wander SA et al (2019) FGFR1 Amplification Mediates Endocrine Resistance but Retains TORC Sensitivity in Metastatic Hormone Receptor-Positive (HR(+)) Breast Cancer. Clin Cancer Res 25:6443–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tomlinson DC, Knowles MA, Speirs V (2012) Mechanisms of FGFR3 actions in endocrine resistant breast cancer. Int J Cancer 130:2857–2866

    Article  CAS  PubMed  Google Scholar 

  97. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A et al (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 7:283ra251

  98. Ribas R, Pancholi S, Guest SK, Marangoni E, Gao Q, Thuleau A et al (2015) AKT antagonist AZD5363 influences estrogen receptor function in endocrine-resistant breast cancer and synergizes with fulvestrant (ICI182780) In Vivo. Mol Cancer Ther 14:2035–2048

    Article  CAS  PubMed  Google Scholar 

  99. Croessmann S, Formisano L, Kinch LN, Gonzalez-Ericsson PI, Sudhan DR, Nagy RJ et al (2019) Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant breast cancer. Clin Cancer Res 25:277–289

    Article  CAS  PubMed  Google Scholar 

  100. Smyth LM, Piha-Paul SA, Won HH, Schram AM, Saura C, Loi S et al (2020) Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic breast cancer. Cancer Discov 10:198–213

    Article  CAS  PubMed  Google Scholar 

  101. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380:1929–1940

    Article  CAS  PubMed  Google Scholar 

  102. Zheng Y, Sowers JY, Houston KD (2020) IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via Erk pathway activation. Front Endocrinol (Lausanne) 11:233

  103. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR et al (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Piva M, Domenici G, Iriondo O, Rabano M, Simoes BM, Comaills V et al (2014) Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 6:66–79

    Article  CAS  PubMed  Google Scholar 

  106. Dubrovska A, Hartung A, Bouchez LC, Walker JR, Reddy VA, Cho CY et al (2012) CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 107:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simoes BM, O’Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A et al (2015) Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity. Cell Rep 12:1968–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McClements L, Annett S, Yakkundi A, O'Rourke M, Valentine A, Moustafa N et al (2019) FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4. BMC Cancer 19:351

  109. Simoes BM, Santiago-Gomez A, Chiodo C, Moreira T, Conole D, Lovell S et al (2020) Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene 39:4896–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106:13820–13825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin X, Li J, Yin G, Zhao Q, Elias D, Lykkesfeldt AE et al (2013) Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. Breast Cancer Res 15:R119

  112. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14:611–629

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R et al (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of \(\beta\)-catenin phosphorylation. Int J Cancer 118:290–301

    Article  CAS  PubMed  Google Scholar 

  115. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T et al (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32:1173–1182

    Article  CAS  PubMed  Google Scholar 

  116. Yuan J, Liu M, Yang L, Tu G, Zhu Q, Chen M et al (2015) Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and beta1-integrin signaling pathway in tumor cells. Breast Cancer Res 17:69

  117. Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ (2018) SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res 20

  118. Kim S, Yao J, Suyama K, Qian X, Qian BZ, Bandyopadhyay S et al (2014) Slug promotes survival during metastasis through suppression of Puma-mediated apoptosis. Cancer Res 74:3695–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL, Ford CE (2013) The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 13: 174

  120. Bui QT, Im JH, Jeong SB, Kim YM, Lim SC, Kim B et al (2017) Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer. Cancer Lett 390:115–125

    Article  CAS  PubMed  Google Scholar 

  121. Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C et al (2017) Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci U S A 114:E4482–E4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gooding AJ, Schiemann WP (2020) Epithelial-mesenchymal transition programs and cancer stem cell phenotypes: mediators of breast cancer therapy resistance. Mol Cancer Res 18:1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nair BC, Vadlamudi RK (2008) Regulation of hormonal therapy resistance by cell cycle machinery. Gene Ther Mol Biol 12:395

  124. Osborne CK, Boldt DH, Clark GM, Trent JM (1983) Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 43:3583–3585

    CAS  PubMed  Google Scholar 

  125. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12 Suppl 1:S47–59

  126. Stendahl M, Kronblad A, Ryden L, Emdin S, Bengtsson NO, Landberg G (2004) Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer 90:1942–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375:1925–1936

    Article  CAS  PubMed  Google Scholar 

  128. Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N et al (2018) Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med 379:1926–1936

    Article  CAS  PubMed  Google Scholar 

  129. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14:130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ et al (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11:R77

  131. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK et al (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H et al (2011) ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov 1:338–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gao A, Sun T, Ma G, Cao J, Hu Q, Chen L et al (2018) LEM4 confers tamoxifen resistance to breast cancer cells by activating cyclin D-CDK4/6-Rb and ERalpha pathway. Nat Commun 9:4180

  134. Bardia A, Hurvitz SA, DeMichele A, Clark AS, Zelnak A, Yardley D et al (2021) Phase I/II trial of exemestane, ribociclib, and everolimus in women with HR+/HER2- advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1). Clin Cancer Res

  135. Mayer IA, Abramson VG, Formisano L, Balko JM, Estrada MV, Sanders ME et al (2017) A phase Ib Study of Alpelisib (BYL719), a PI3Kalpha-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin Cancer Res 23:26–34

    Article  CAS  PubMed  Google Scholar 

  136. Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL et al (2012) Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res 72:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69:169–181

    Article  CAS  PubMed  Google Scholar 

  138. Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U et al (2018) Reactivation of cAMP pathway by PDE4D inhibition represents a novel druggable axis for overcoming tamoxifen resistance in ER-positive breast cancer. Clin Cancer Res 24:1987–2001

    Article  CAS  PubMed  Google Scholar 

  139. McCloy RA, Shelley EJ, Roberts CG, Boslem E, Biden TJ, Nicholson RI et al (2013) Role of endoplasmic reticulum stress induction by the plant toxin, persin, in overcoming resistance to the apoptotic effects of tamoxifen in human breast cancer cells. Br J Cancer 109:3034–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M et al (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607

    Article  CAS  PubMed  Google Scholar 

  141. Gonzalez-Malerva L, Park J, Zou L, Hu Y, Moradpour Z, Pearlberg J et al (2011) High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A 108:2058–2063

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kulkoyluoglu-Cotul E, Smith BP, Wrobel K, Zhao YC, Chen KLA, Hieronymi K et al (2019) Combined targeting of estrogen receptor alpha and XPO1 prevent Akt activation, remodel metabolic pathways and induce autophagy to overcome tamoxifen resistance. Cancers (Basel) 11

  143. Ariazi EA, Cunliffe HE, Lewis-Wambi JS, Slifker MJ, Willis AL, Ramos P et al (2011) Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc Natl Acad Sci U S A 108:18879–18886

    Article  PubMed  PubMed Central  Google Scholar 

  144. Abderrahman B, Maximov PY, Curpan RF, Fanning SW, Hanspal JS, Fan P et al (2021) Rapid induction of the unfolded protein response and apoptosis by estrogen mimic TTC-352 for the treatment of endocrine-resistant breast cancer. Mol Cancer Ther 20:11–25

    Article  CAS  PubMed  Google Scholar 

  145. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ et al (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43

    Article  CAS  PubMed  Google Scholar 

  146. Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X et al (2018) Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Investig 128:1283–1299

    Article  PubMed  PubMed Central  Google Scholar 

  147. Barua D, Gupta A, Gupta S (2020) Targeting the IRE1-XBP1 axis to overcome endocrine resistance in breast cancer: Opportunities and challenges. Cancer Lett 486:29–37

    Article  CAS  PubMed  Google Scholar 

  148. Davies MP, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R et al (2008) Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer 123:85–88

    Article  CAS  PubMed  Google Scholar 

  149. Mao C, Livezey M, Kim JE, Shapiro DJ (2016) Antiestrogen resistant cell lines expressing estrogen receptor alpha mutations upregulate the unfolded protein response and are killed by BHPI. Sci Rep 6:34753

  150. Ming J, Ruan S, Wang M, Ye D, Fan N, Meng Q et al (2015) A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget 6:40692–40703

    Article  PubMed  PubMed Central  Google Scholar 

  151. Feng W, Webb P, Nguyen P, Liu X, Li J, Karin M et al (2001) Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol Endocrinol 15:32–45

    Article  CAS  PubMed  Google Scholar 

  152. Lee H, Bai W (2002) Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol 22:5835–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R (2012) Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res 72:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB et al (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112:389–403

    Article  CAS  PubMed  Google Scholar 

  155. Haslam SZ, Woodward TL (2003) Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res 5:208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ et al (2012) The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat 133:459–471

    Article  CAS  PubMed  Google Scholar 

  157. Umar A, Kang H, Timmermans AM, Look MP, Meijer-van Gelder ME, den Bakker MA et al (2009) Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer. Mol Cell Proteomics 8:1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Helleman J, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Meijer-van Gelder ME et al (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14:5555–5564

    Article  CAS  PubMed  Google Scholar 

  159. Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA (2015) Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 10:e0116891

  160. Jallow F, O’Leary KA, Rugowski DE, Guerrero JF, Ponik SM, Schuler LA (2019) Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer. Oncogene 38:6913–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ali HR, Glont SE, Blows FM, Provenzano E, Dawson SJ, Liu B et al (2015) PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol 26:1488–1493

    Article  CAS  PubMed  Google Scholar 

  162. Joffroy CM, Buck MB, Stope MB, Popp SL, Pfizenmaier K, Knabbe C (2010) Antiestrogens induce transforming growth factor beta-mediated immunosuppression in breast cancer. Cancer Res 70:1314–1322

    Article  CAS  PubMed  Google Scholar 

  163. Bianchini G, Qi Y, Alvarez RH, Iwamoto T, Coutant C, Ibrahim NK et al (2010) Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28:4316–4323

    Article  Google Scholar 

  164. Anurag M, Zhu M, Huang C, Vasaikar S, Wang J, Hoog J et al (2020) Immune checkpoint profiles in luminal B breast cancer (Alliance). J Natl Cancer Inst 112:737–746

    Article  PubMed  Google Scholar 

  165. Vonderheide RH, LoRusso PM, Khalil M, Gartner EM, Khaira D, Soulieres D et al (2010) Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 16:3485–3494

    Article  CAS  PubMed  Google Scholar 

  166. Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY et al (2018) Human breast tumor-infiltrating CD8(+) T cells retain polyfunctionality despite PD-1 expression. Nat Commun 9:4297

  167. Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G, Jansson S et al (2018) Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med 24:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sansone P, Berishaj M, Rajasekhar VK, Ceccarelli C, Chang Q, Strillacci A et al (2017) Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Cancer Res 77:1927–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  PubMed  Google Scholar 

  170. Sotgia F, Fiorillo M, Lisanti MP (2017) Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget 8:68730–68745

    Article  PubMed  PubMed Central  Google Scholar 

  171. Li D, Ji H, Niu X, Yin L, Wang Y, Gu Y et al (2020) Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Sci 111:47–58

    Article  CAS  PubMed  Google Scholar 

  172. Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer. An overview and update. Mol Cell Endocrinol 418 Pt 3:220–234

  173. Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71

    Article  CAS  PubMed  Google Scholar 

  174. Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, Althouse S et al (2019) Glutamine metabolism drives growth in advanced hormone receptor positive breast cancer. Front Oncol 9:686

  175. Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S et al (2019) Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer. Cell Rep 28:104–118 e108

  176. Morotti M, Bridges E, Valli A, Choudhry H, Sheldon H, Wigfield S et al (2019) Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer. Proc Natl Acad Sci U S A 116:12452–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM et al (2014) MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer 13:239

  178. Hamadneh L, Abuarqoub R, Alhusban A, Bahader M (2020) Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep 10:21933

  179. Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T et al (2019) Ligand-binding domain-activating mutations of ESR1 rewire cellular metabolism of breast cancer cells. Clin Cancer Res 25:2900–2914

    Article  CAS  PubMed  Google Scholar 

  180. Du T, Sikora MJ, Levine KM, Tasdemir N, Riggins RB, Wendell SG et al (2018) Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 20:106

  181. Chu X, Zhou Q, Xu Y, Jiang J, Li Q, Zhou Q et al (2019) Aberrant fatty acid profile and FFAR4 signaling confer endocrine resistance in breast cancer. J Exp Clin Cancer Res 38:100

  182. Menendez JA, Papadimitropoulou A, Vander Steen T, Cuyas E, Oza-Gajera BP, Verdura S et al (2021) Fatty Acid Synthase Confers Tamoxifen Resistance to ER+/HER2+ Breast Cancer. Cancers (Basel) 13

  183. Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N et al (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu WS, Chan SH, Chang HT, Li GC, Tu YT, Tseng HH et al (2018) Isocitrate dehydrogenase 1-snail axis dysfunction significantly correlates with breast cancer prognosis and regulates cell invasion ability. Breast Cancer Res 20:25

  185. Fathi AT, Sadrzadeh H, Comander AH, Higgins MJ, Bardia A, Perry A et al (2014) Isocitrate dehydrogenase 1 (IDH1) mutation in breast adenocarcinoma is associated with elevated levels of serum and urine 2-hydroxyglutarate. Oncologist 19:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yue M, Jiang J, Gao P, Liu H, Qing G (2017) Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep 21:3819–3832

    Article  CAS  PubMed  Google Scholar 

  187. Aftimos P, Oliveira M, Irrthum A, Fumagalli D, Sotiriou C, Nili Gal-Yam E et al (2021) Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in AURORA, the Breast International Group (BIG) molecular screening initiative. Cancer Discov candisc.1647.2020

  188. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT et al (2020) Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 22:310–320

    Article  CAS  PubMed  Google Scholar 

  189. Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG et al (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22:577–589

    Article  CAS  PubMed  Google Scholar 

  190. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486

    Article  CAS  PubMed  Google Scholar 

  191. Wang L, Zhang S, Wang X (2020) The metabolic mechanisms of breast cancer metastasis. Front Oncol 10:602416

  192. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P et al (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377:1836–1846

    Article  PubMed  PubMed Central  Google Scholar 

  193. Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB, Garrett AL et al (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Investig 128:1371–1383

    Article  PubMed  PubMed Central  Google Scholar 

  194. Nayar U, Cohen O, Kapstad C, Cuoco MS, Waks AG, Wander SA et al (2019) Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet 51:207–216

    Article  CAS  PubMed  Google Scholar 

  195. Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP et al (2020) FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Investig 130:4871–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Vareslija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O’Halloran PJ et al (2019) Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J Natl Cancer Inst 111:388–398

    Article  PubMed  Google Scholar 

  197. Priedigkeit N, Watters RJ, Lucas PC, Basudan A, Bhargava R, Horne W et al (2017) Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone metastases. JCI Insight 2(17):e95703

  198. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  199. Shah M, Nunes MR, Stearns V (2018) CDK4/6 inhibitors: game changers in the management of hormone receptor-positive advanced breast cancer? Oncology (Williston Park) 32:216–222

    Google Scholar 

  200. Desnoyers A, Nadler MB, Kumar V, Saleh R, Amir E (2020) Comparison of treatment-related adverse events of different cyclin-dependent kinase 4/6 inhibitors in metastatic breast cancer: a network meta-analysis. Cancer Treat Rev 90:102086

  201. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X et al (2021) FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin Cancer Res 27:1842–1849

    Article  CAS  PubMed  Google Scholar 

  202. Royce M, Bachelot T, Villanueva C, Ozguroglu M, Azevedo SJ, Cruz FM et al (2018) Everolimus plus endocrine therapy for postmenopausal women with estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: a clinical trial. JAMA Oncol 4:977–984

    Article  PubMed  PubMed Central  Google Scholar 

  203. Dudek AZ, Liu LC, Fischer JH, Wiley EL, Sachdev JC, Bleeker J et al (2020) Phase 1 study of TTC-352 in patients with metastatic breast cancer progressing on endocrine and CDK4/6 inhibitor therapy. Breast Cancer Res Treat 183:617–627

    Article  CAS  PubMed  Google Scholar 

  204. Bihani T, Patel HK, Arlt H, Tao N, Jiang H, Brown JL et al (2017) Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has antitumor activity in multiple ER(+) breast cancer patient-derived xenograft models. Clin Cancer Res 23:4793–4804

    Article  CAS  PubMed  Google Scholar 

  205. Wardell SE, Nelson ER, Chao CA, Alley HM, McDonnell DP (2015) Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocr Relat Cancer 22:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Patel HK, Tao N, Lee KM, Huerta M, Arlt H, Mullarkey T et al (2019) Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res 21:146

  207. Bardia A, Aftimos P, Bihani T, Anderson-Villaluz AT, Jung J, Conlan MG et al (2019) EMERALD: Phase III trial of elacestrant (RAD1901) vs endocrine therapy for previously treated ER+ advanced breast cancer. Future Oncol 15:3209–3218

    Article  CAS  PubMed  Google Scholar 

  208. Wander SA, Juric D, Supko JG, Micalizzi DS, Spring L, Vidula N et al (2020) Phase Ib trial to evaluate safety and anti-tumor activity of the AKT inhibitor, ipatasertib, in combination with endocrine therapy and a CDK4/6 inhibitor for patients with hormone receptor positive (HR+)/HER2 negative metastatic breast cancer (MBC) (TAKTIC). Am J Clin Oncol 38

  209. Rinnerthaler G, Gampenrieder SP, Greil R (2019) HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int J Mol Sci 20

  210. Yeruva SLH, Zhao F, Miller KD, Tevaarwerk AJ, Wagner LI, Gray RJ et al (2018) E2112: randomized phase iii trial of endocrine therapy plus entinostat/placebo in patients with hormone receptor-positive advanced breast cancer. NPJ Breast Cancer 4:1

  211. Connolly RM, Zhao F, Miller KD, Lee MJ, Piekarz RL, Smith KL et al (2021) E2112: Randomized Phase III Trial of Endocrine Therapy Plus Entinostat or Placebo in Hormone Receptor-Positive Advanced Breast Cancer. A Trial of the ECOG-ACRIN Cancer Research Group Journal of clinical oncology : official journal of the American Society of Clinical Oncology: JCO2100944

Download references

Funding

This work was supported by the American Cancer Society Research Scholar Grant RSG-19–194-01-CSM (OS), National Institutes of Health Grant 2P20GM109091-06 (OS), and Susan G. Komen Interdisciplinary Graduate Training to Eliminate Cancer Disparities (IGniTE-CD) GTDR17500160 (OzgeS).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: OS; literature search and collection of the scientific information: O.Saatci and KH; writing, review and/or revision of the manuscript: O.Saatci and KH; critical revision and editing of the article for important intellectual content and final approval: OS.

Corresponding author

Correspondence to Ozgur Sahin.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Consent to publish has been obtained from all authors.

Conflict of interest

O. Sahin is co-founder of OncoCube Therapeutics LLC; founder and president of LoxiGen, Inc.; and is also a recipient of a research grant from Halozyme Therapeutics, Inc. The other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saatci, O., Huynh-Dam, KT. & Sahin, O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med 99, 1691–1710 (2021). https://doi.org/10.1007/s00109-021-02136-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02136-5

Keywords

Navigation