Skip to main content
Log in

Turbulent Schmidt Number Measurements Over Three-Dimensional Cubic Arrays

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present turbulent Schmidt number (\( Sc_{\text{t}} \)) estimations above three-dimensional urban canopies, where \( Sc_{\text{t}} \) is a property of the flow defined as the ratio of the eddy diffusivity of momentum (\( K_{M} \)) to the eddy diffusivity of mass (\( D_{t} \)). Despite the fact that \( Sc_{t} \) modelling is of great interest, inter alia, for pollutant dispersion simulations conducted via computational fluid dynamics, no universal value is known. Simultaneous measurements of fluid velocity and mass concentration are carried out in a water channel for three staggered arrays of cubical obstacles corresponding to isolated flow, wake-interference, and skimming-flow regimes. A passive tracer is released from a continuous point source located at a height \( z = 1.67H \) where H is the obstacle height. The results show an increase of \( Sc_{\text{t}} \) with height above the canopy for all three arrays, with values at \( z = 2H \) (\( Sc_{t} \approx 0.6 \)) about double compared to that at \( z = H \). The observed \( Sc_{t} \) agrees well with that modelled by using a simple formulation for \( Sc_{t} \) based on expressions for \( K_{M} \) and \( D_{t} \) published in previous studies. Comparisons with other \( Sc_{t} \) models found in the literature are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amicarelli A, Leuzzi G, Monti P, Thomson DJ (2011) A comparison between IECM and IEM Lagrangian models. Int J Environ Pollut 44:324–331

    Article  Google Scholar 

  • Anfossi D, Rizza U, Mangia C, Degrazia GA, Pereira Marques Filho E (2006) Estimation of the ratio between the Lagrangian and Eulerian time scales in an atmospheric boundary layer generated by large eddy simulation. Atmos Environ 40:326–337

    Article  Google Scholar 

  • Badas MG, Ferrari S, Garau M, Querzoli G (2017) On the effect of gable roof on natural ventilation in two-dimensional urban canyons. J Wind Eng Ind Aerodyn 162:24–34

    Article  Google Scholar 

  • Baik J-J, Kim J-J (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36:527–536

    Article  Google Scholar 

  • Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Clim 10:216–240

    Article  Google Scholar 

  • Barlow JF, Harman IN, Belcher SE (2004) Scalar fluxes from urban street canyons. Part I: laboratory simulation. Boundary-Layer Meteorol 113:369–385

    Article  Google Scholar 

  • Ben Salem A, Garbero V, Salizzoni P, Lamaison G, Soulhac L (2015) Modelling pollutant dispersion in a street network. Boundary-Layer Meteorol 155:157–187

    Article  Google Scholar 

  • Blocken B, Stathopoulos T, Saathoff P, Wang X (2008) Numerical evaluation of pollutant dispersion in the built environment: comparison between models and experiments. J Wind Eng Ind Aerodyn 96:1817–1831

    Article  Google Scholar 

  • Buccolieri R, Salizzoni P, Soulhac L, Garbero V, Di Sabatino S (2015) The breathability of compact cities. Urban Clim 13:79–93

    Article  Google Scholar 

  • Carpentieri M, Hayden P, Robins AG (2012) Wind tunnel measurements of pollutant turbulent fluxes in urban intersections. Atmos Environ 46:669–674

    Article  Google Scholar 

  • Carpentieri M, Robins AG, Hayden P, Santi E (2018) Mean and turbulent flux measurements in an idealized street network. Environ Pollut 234:356–367

    Article  Google Scholar 

  • Castro IP, Xie Z-T, Fuka V, Robins AG, Carpentieri M, Hayden P, Hertwig D, Coceal O (2017) Measurements and computations of flow in an urban street system. Bound-Layer Meteorol 162:207–230

    Article  Google Scholar 

  • Cenedese A, Del Prete Z, Miozzi M, Querzoli G (2005) A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp Fluids 39:322–335

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519

    Article  Google Scholar 

  • Dezső-Weidinger G, Stitou A, van Beeck J, Riethmuller ML (2003) Measurements of the turbulent mass flux with PTV in a street canyon. J Wind Eng Ind Aerodyn 91:1117–1131

    Article  Google Scholar 

  • Di Bernardino A, Monti P, Leuzzi G, Querzoli G (2015) Water-channel study of flow and turbulence past a 2D array of obstacles. Boundary-Layer Meteorol 155:73–85

    Article  Google Scholar 

  • Di Bernardino A, Monti P, Leuzzi G, Querzoli G (2017) Water-channel estimation of Eulerian and Lagrangian time scales of the turbulence in idealized two-dimensional urban canopies. Boundary-Layer Meteorol 165:251–276

    Article  Google Scholar 

  • Di Bernardino A, Monti P, Leuzzi G, Querzoli G (2018) Pollutant fluxes in two-dimensional street canyons. Urban Clim 24:80–93

    Article  Google Scholar 

  • Di Bernardino A, Monti P, Leuzzi G, Querzoli G (2019) Eulerian and Lagrangian time scales of the turbulence above staggered arrays of cubical obstacles. Under Rev Environ Fluid Mech

  • Di Sabatino S, Buccolieri R, Pulvirenti B, Britter R (2007) Simulations of pollutant dispersion within idealised urban-type geometries using CFD and integral models. Atmos Environ 41:8316–8329

    Article  Google Scholar 

  • Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127:131–151

    Article  Google Scholar 

  • Ebrahimi M, Jahangirian A (2013) New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD. Environ Fluid Mech 13:125–144

    Article  Google Scholar 

  • Ehrhard J, Moussiopoulos N (2000) On a new nonlinear turbulence model for simulating flows around building shaped structures. J Wind Eng Ind Aerodyn 88:91–99

    Article  Google Scholar 

  • Fackrell JE, Robins AG (1982) Concentration fluctuations and fluxes in plumes from point sources in a turbulent flow. J Fluid Mech 117:1–26

    Article  Google Scholar 

  • Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Flesch TK, Prueger JH, Hatfield JL (2002) Turbulent Schmidt number from a tracer experiment. Agric For Meteorol 111:299–307

    Article  Google Scholar 

  • Gorlé C, van Beeck J, Rambaud P (2010) Dispersion in the wake of a rectangular building: validation of two Reynolds-averaged Navier-Stokes modelling approaches. Boundary-Layer Meteorol 137:115–133

    Article  Google Scholar 

  • Goulart EV, Coceal O, Belcher SE (2018) Dispersion of a passive scalar within and above an urban street network. Boundary-Layer Meteorol 166:351–366

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J Appl Meteorol 38:1261–1292

    Google Scholar 

  • Gualtieri C, Angeloudis A, Bombardelli F, Jha S, Stoesser T (2017) On the values for the turbulent Schmidt number in environmental flows. Fluids 2:1–27

    Article  Google Scholar 

  • Harman IN, Finnigan JJ (2008) Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorol 129:323–351

    Article  Google Scholar 

  • Huq P, Franzese P (2013) Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Boundary-Layer Meteorol 147:103–121

    Article  Google Scholar 

  • Kanda M (2006) Large-eddy simulation on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118:151–168

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112:343–368

    Article  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148:357–377

    Article  Google Scholar 

  • Koeltzsch K (2000) The height dependence of the turbulent Schmidt number within the boundary layer. Atmos Environ 34:1147–1151

    Article  Google Scholar 

  • Lateb M, Meroney RN, Yataghene M, Fellouah H, Saleh F, Boufadel MC (2016) On the use of numerical modelling for near-field pollutant dispersion in urban environments—a review. Environ Pollut 208:271–283

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  • Longo R, Fürst M, Bellemans A, Ferraroi M, Derudi M, Parente A (2019) CFD dispersion study based on a variable Schmidt formulation for flows around different configurations of ground-mounted buildings. Build Environ 154:336–347

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1. MIT Press, Cambridge, p 769

    Google Scholar 

  • Monti P, Querzoli G, Cenedese A, Piccinini S (2007) Mixing properties of a stably stratified parallel shear layer. Phys Fluids 19, Article number 085104 (1–9)

  • Nakiboglu G, Gorlé C, Horváth I, van Beeck J, Blocken B (2009) Stack gas dispersion measurements with large scale-piv, aspiration probes and light scattering techniques and comparison with CFD. Atmos Environ 43:3396–3406

    Article  Google Scholar 

  • Neophytou MK-A, Markides CN, Fokaides PA (2014) An experimental study of the flow through and over two-dimensional rectangular roughness elements: deductions for urban boundary layer parameterizations and exchange processes. Phys Fluids 26:086603

    Article  Google Scholar 

  • Nosek S, Kukačka L, Kellnerová R, Jurčàkovà K, Jaňour Z (2016) Ventilation processes in a three-dimensional street canyon. Boundary-Layer Meteorol 159:259–284

    Article  Google Scholar 

  • Nosek S, Kukačka L, Jurčàkovà K, Kellnerová R, Jaňour Z (2017) Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections. Environ Pollut 227:125–138

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric Turbulence. John Wiley & Sons, New York

    Google Scholar 

  • Pelliccioni A, Monti P, Leuzzi G (2016) Wind-speed profile and roughness sublayer depth modelling in urban boundary layers. Boundary-Layer Meteorol 160:225–248

    Article  Google Scholar 

  • Poggi D, Katul GG, Cassiani M (2008) On the anomalous behavior of the Lagrangian structure function similarity constant inside dense canopies. Atmos Environ 42:4212–4231

    Article  Google Scholar 

  • Pournazeri S, Schulte N, Tan S, Princevac M, Venkatram A (2013) Dispersion of buoyant emissions from low level sources in urban areas: water channel modelling. Int J Environ Pollut 52:119–140

    Article  Google Scholar 

  • Querzoli G, Seoni A, Garau M, Ferrari S, Badas MG (2017) The air quality in narrow two-dimensional urban canyons with pitched and flat roof buildings. Int J Environ Pollut 62:347–368

    Article  Google Scholar 

  • Riddle A, Carruthers D, Sharpe A, McHugh C, Stocker J (2004) Comparisons between FLUENT and ADMS for atmospheric dispersion modeling. Atmos Environ 38:1029–1038

    Article  Google Scholar 

  • Rogers MM (1991) The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys Fluids 3:144–154

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Salizzoni P, Van Liefferinge R, Soulhac L, Mejean P, Perkins RJ (2009) Influence of wall roughness on the dispersion of a passive scalar in a turbulent boundary layer. Atmos Environ 43:734–748

    Article  Google Scholar 

  • Salizzoni P, Marro M, Soulhac L, Grosjean N, Perkins RJ (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Boundary-Layer Meteorol 141:393–414

    Article  Google Scholar 

  • Salvati A, Monti P, Coch Roura H, Cecere C (2019) Climatic performance of urban textures: analysis tools for a Mediterranean urban context. Ener Buil 185:162–179

    Article  Google Scholar 

  • Sawford BL, Guest FM (1988) Uniqueness and universality of Lagrangian stochastic models of turbulent dispersion. In: Proceedings of the eighth symposium on turbulence and diffusion, American Meteorological Society, San Diego, pp 96–99

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666

    Book  Google Scholar 

  • Takimoto H, Sato A, Barlow JF, Moriwaki R, Inagaki A, Onomura S, Kanda M (2011) Particle image velocimetry measurements of turbulent flow within outdoor and indoor urban scale models and flushing motions in urban canopy layers. Boundary-Layer Meteorol 140:295–314

    Article  Google Scholar 

  • Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt F, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. D. Reidel Publishing Company, Dordrecht, pp 37–68

    Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 18:529–556

    Article  Google Scholar 

  • Tomas JM, Eisma HE, Pourquie MJBM, Elsinga GE, Jonker HJJ, Westerweel J (2017) Pollutant dispersion in boundary layers exposed to rural-to-urban transitions: varying the spanwise length scale of the roughness. Boundary-Layer Meteorol 163:225–251

    Article  Google Scholar 

  • Tominaga Y, Stathopoulos T (2007) Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos Environ 41:8091–8099

    Article  Google Scholar 

  • Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerodyn 99:340–348

    Article  Google Scholar 

  • Tominaga Y, Stathopoulos T (2012) CFD modeling of pollution dispersion in building array: evaluation of turbulent scalar flux modeling in RANS model using LES results. J Wind Eng Ind Aerodyn 99:340–348

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge, p 429

    Google Scholar 

  • Vinçont J-Y, Simoëns S, Ayrault M, Wallace JM (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J Fluid Mech 424:127–167

    Article  Google Scholar 

  • Wilson JD (2013) Turbulent Schmidt numbers above a wheat crop. Boundary-Layer Meteorol 148:255–268

    Article  Google Scholar 

  • Wilson JD, Yee E (2007) A critical examination of the random displacement model of turbulent dispersion. Boundary-Layer Meteorol 125:399–416

    Article  Google Scholar 

  • Zajic D, Fernando HJS, Calhoun R, Princevac M, Brown MJ, Pardyjak ER (2011) Flow and turbulence in an urban canyon. J Appl Meteorol Climatol 50:203–223

    Article  Google Scholar 

Download references

Acknowledgements

The assistance of Manuel Mastrangelo and Cristina Grossi (Master degree students of the University of Rome “La Sapienza”) to the measurements was greatly appreciated. This research was supported by the RG11715C7D43B2B6 fund from the University of Rome “La Sapienza”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Monti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Bernardino, A., Monti, P., Leuzzi, G. et al. Turbulent Schmidt Number Measurements Over Three-Dimensional Cubic Arrays. Boundary-Layer Meteorol 174, 231–250 (2020). https://doi.org/10.1007/s10546-019-00482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-019-00482-z

Keywords

Navigation