Skip to main content
Log in

Optimizing the Determination of Roughness Parameters for Model Urban Canopies

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length \(z_0\), and friction velocity \(u_*\). Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of \(z_0\) and \(u_*\) are identified by the peak in the bivariate histogram of \(z_0\) and \(u_*\). The methodology has been verified against laboratory datasets of flow above model urban canopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amir M, Castro IP (2011) Turbulence in rough-wall boundary layers: universality issues. Exp Fluids 51(2):313–326

    Article  Google Scholar 

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149

    Article  Google Scholar 

  • Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Clim 10:216–240

    Article  Google Scholar 

  • Britter R, Hanna S (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35(1):469–496

    Article  Google Scholar 

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Boundary-Layer Meteorol 118(1):109–131

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104(2):229–259

    Article  Google Scholar 

  • Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95(8):715–740

    Article  Google Scholar 

  • Cionco RM (1965) A mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4(4):517–522

    Article  Google Scholar 

  • Collier CG (2006) The impact of urban areas on weather. Q J R Meteorol Soc 132(614):1–25

    Article  Google Scholar 

  • Counihan J (1969) An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmos Environ 3(2):197–200

    Article  Google Scholar 

  • Fernando H (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  • Flack K, Schultz M (2010) Review of hydraulic roughness scales in the fully rough regime. J Fluids Eng 132(4):041203

    Article  Google Scholar 

  • Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys Fluids 17(3):035102

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Graf A, Boer A, Moene A, Vereecken H (2014) Intercomparison of methods for the simultaneous estimation of zero-plane displacement and aerodynamic roughness length from single-level eddy-covariance data. Boundary-Layer Meteorol 151(2):373–387

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41(7):792–810

    Article  Google Scholar 

  • Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132(2):315–337

    Article  Google Scholar 

  • Hanna SR, Tehranian S, Carissimo B, Macdonald RW, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5079

    Article  Google Scholar 

  • Huq P, Franzese P (2013) Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Boundary-Layer Meteorol 147:103–121

    Article  Google Scholar 

  • Huq P, Carrillo A, White LA, Redondo J, Dharmavaram S, Hanna SR (2007) The shear layer above and in urban canopies. J Appl Meteorol Clim 46:368–376

    Article  Google Scholar 

  • Inoue E (1963) On the turbulent structure of airflow within crop canopies. J Meteorol Soc Jpn Ser II 41(6):317–326

    Article  Google Scholar 

  • Jimenez J (2004) Turbulent flow over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148(2):357–377

    Article  Google Scholar 

  • Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111(1):55–84

    Article  Google Scholar 

  • Kawaguchi Y, Senda T, Ando H, Kawashima H, Iwamoto K, Motozawa M, Ito T, Matsumoto A, Ito T (2011) Experimental investigation on effects of surface roughness geometry affecting to flow resistance. In: ASME-JSME-KSME 2011 joint fluids engineering conference. ASME, New York, pp 3945–3954

  • Kent CW, Grimmond S, Barlow J, Gatey D, Kotthaus S, Lindberg F, Halios CH (2017) Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas. Boundary-Layer Meteorol 164(2):183–213

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8(5):828–832

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97(1):25–45

    Article  Google Scholar 

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32(11):1857–1864

    Article  Google Scholar 

  • Macdonald RW, Carter S, Slawson PR (2000) Measurements of mean velocity and turbulence statistics in simple obstacle arrays at 1:200 scale. Thermal Fluids Report 2000-1, Department of Mechanical Engineering, University of Waterloo

  • McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004) Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech 501:135–147

    Article  Google Scholar 

  • Milliez M, Carissimo B (2007) Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorol 122(2):321–342

    Article  Google Scholar 

  • Mohammad A, Zaki S, Hagishima A, Ali M (2014) Determination of aerodynamic parameters of urban surfaces: methods and results revisited. Theor Appl Climatol 122(3–4):635–649

    Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Paeschke W (1937) Experimentelle untersuchungen zum rauhigkeits und stabilitaets-problem in der freien atmosphere. Beitr Phys Atmos 24:163–189

    Google Scholar 

  • Raupach M, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13(1):97–129

    Article  Google Scholar 

  • Reynolds RT, Castro IP (2008) Measurements in an urban-type boundary layer. Exp Fluids 45(1):141–156

    Article  Google Scholar 

  • Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3):1–101

    Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Shinn JH (1971) Steady-state two-dimensional air flow in forests and the disturbance of surface layer flow by a forest wall. Atmospheric Sciences Lab, White Sands Missile Range, New Mexico

  • Shockling M, Allen J, Smits AJ (2006) Roughness effects in turbulent pipe flow. J Fluid Mech 564:267–285

    Article  Google Scholar 

  • Smits AJ, McKeon BJ, Marusic I (2011) High Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375

    Article  Google Scholar 

  • Sogachev A, Kelly M (2016) On displacement height, from classical to practical formulation: stress, turbulent transport and vorticity considerations. Boundary-Layer Meteorol 158(3):361–381

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Thom A (1971) Momentum absorption by vegetation. Q J R Meteorol Soc 97:414–428

    Article  Google Scholar 

  • Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wieringa J (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorol 63(4):323–363

    Article  Google Scholar 

  • Yee E, Gailis RM, Hill A, Hilderman T, Kiel D (2006) Comparison of wind-tunnel and water-channel simulations of plume dispersion through a large array of obstacles with a scaled field experiment. Boundary-Layer Meteorol 121(3):389–432

    Article  Google Scholar 

  • Zaki SA, Hagishima A, Tanimoto J, Ikegaya N (2011) Aerodynamic parameters of urban building arrays with random geometries. Boundary-Layer Meteorol 138(1):99–120

    Article  Google Scholar 

  • Zhu X, Iungo GV, Leonardi S, Anderson W (2017) Parametric study of urban-like topographic statistical moments relevant to a priori modelling of bulk aerodynamic parameters. Boundary-Layer Meteorol 162(2):231–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auvi Rahman.

Appendix

Appendix

The equations involved in the least-squares procedure for determining the friction velocity and roughness length are presented here. The friction velocity \(u_*/U_H\) is obtained from the slope

$$\begin{aligned} \,\,m = \left[ \frac{\sum \left( \left( \ln \left( \frac{z-d}{H}\right) \right) \left( \frac{U(z/H)}{U_H}\right) \right) - \frac{\left( \sum \ln \left( \frac{z-d}{H}\right) \right) \left( \sum \frac{U(z/H)}{U_H}\right) }{k}}{{\sum \left( \frac{U(z/H)}{U_H}\right) ^2} - \frac{\left( \sum \frac{U(z/H)}{U_H}\right) ^2}{k}} \right] , \end{aligned}$$
(15)

and the non-dimensional friction velocity \(u_*/U_H = \kappa /m\), thus

$$\begin{aligned} \frac{u_*}{U_H} = \kappa \left[ \frac{\sum \left( \left( \ln \left( \frac{z-d}{H}\right) \right) \left( \frac{U(z/H)}{U_H}\right) \right) - \frac{\left( \sum \ln \left( \frac{z-d}{H}\right) \right) \left( \sum \frac{U(z/H)}{U_H}\right) }{k}}{{\sum \left( \frac{U(z/H)}{U_H}\right) ^2} - \frac{\left( \sum \frac{U(z/H)}{U_H}\right) ^2}{k}} \right] ^{-1}, \end{aligned}$$
(16)

and the roughness length \(z_0/H\) is obtained from the intercept

$$\begin{aligned} \,\,C=\left[ \frac{\sum \ln \left( \frac{z-d}{H}\right) }{k} - \frac{\kappa }{u_*/U_H} \frac{\sum \frac{U(z/H)}{U_H}}{k}\right] , \end{aligned}$$
(17)

and the non-dimensional roughness length \(z_0/H=\exp (C)\), thus

$$\begin{aligned} \frac{z_0}{H}=\exp \left[ \frac{\sum \ln \left( \frac{z-d}{H}\right) }{k} - \frac{\kappa }{u_*/U_H} \frac{\sum \frac{U(z/H)}{U_H}}{k}\right] , \end{aligned}$$
(18)

where \(\Sigma \) represents a summation, and k is the number of data points for a profile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huq, P., Rahman, A. Optimizing the Determination of Roughness Parameters for Model Urban Canopies. Boundary-Layer Meteorol 168, 497–515 (2018). https://doi.org/10.1007/s10546-018-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0352-8

Keywords

Navigation