Skip to main content
Log in

Sensitivity Issues in Finite-Difference Large-Eddy Simulations of the Atmospheric Boundary Layer with Dynamic Subgrid-Scale Models

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The neutral atmospheric boundary layer (ABL) is simulated by finite-difference large-eddy simulations (LES) with various dynamic subgrid-scale (SGS) models. The goal is to understand the sensitivity of the results to several aspects of the simulation set-up: SGS model, numerical scheme for the convective term, resolution, and filter type. Three dynamic SGS models are tested: two scale-invariant models and the Lagrangian-averaged scale-dependent (LASD) model. The results show that the LASD model has the best performance in capturing the law-of-the-wall, because the scale invariance hypothesis is violated in finite-difference LES. Two forms of the convective term are tested, the skew-symmetric and the divergence forms. The choice of the convective term is more important when the LASD model is used and the skew-symmetric scheme leads to better simulations in general. However, at fine resolutions both in space and time, the sensitivity to the convective scheme is reduced. Increasing the resolution improves the performance in general, but does not better capture the law of the wall. The box and Gaussian filters are tested and it is found that, combined with the LASD model, the Gaussian filter is not sufficient to dissipate the small numerical noises, which in turn affects the large-scale motions. In conclusion, to get the most benefits of the LASD model within the finite-difference framework, the simulations need to be set up properly by choosing the right combination of numerical scheme, resolution, and filter type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Archer C, Mirzaeisefat S, Lee S (2013) Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation. Geophys Res Lett 40:4963–4970

    Article  Google Scholar 

  • Balaras E, Benocci C, Piomelli U (1995) Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model. Theor Comput Fluid Dyn 7:207–216

    Article  Google Scholar 

  • Blaisdell G, Spyropoulos E, Qin J (1996) The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl Numer Math 21(3):207–219

    Article  Google Scholar 

  • Bou-Zeid E, Parlange M, Meneveau C (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(025):105

    Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange M, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(115):106

    Google Scholar 

  • Brasseur J, Wei T (2010) Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys Fluids 22(021):303

    Google Scholar 

  • Calaf M, Meneveau C, Meyers J (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids 22(015):110

    Google Scholar 

  • Calaf M, Parlange M, Meneveau C (2011) Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys Fluids 23(126):603

    Google Scholar 

  • Chow F, Moin P (2003) A further study of numerical errors in large-eddy simulations. J Comput Phys 184:366–380

    Article  Google Scholar 

  • Chow F, Street R, Xue M, Ferziger J (2005) Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62:2058–2077

    Article  Google Scholar 

  • Churchfield M, Lee S, Michalakes J, Moriarty P (2012a) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13:1–32

    Article  Google Scholar 

  • Churchfield M, Lee S, Moriarty P, Martínez L, Leonardi S, Vijayakumar G, Brasseur J (2012b) A large-eddy simulation of wind-plant aerodynamics. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee

  • De Stefano G, Vasilyev O (2002) Sharp cutoff versus smooth filtering in large eddy simulation. Phys Fluids 14(1):362–369

    Article  Google Scholar 

  • Deardorff J (1970) A numerical study of three-dimensional turbulence channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    Article  Google Scholar 

  • DesJardin P, Frankel S (1998) Large-eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys Fluids 10:2298–2314

    Article  Google Scholar 

  • Germano M, Piomelli U, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765

    Article  Google Scholar 

  • Gullbrand J, Chow F (2003) The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J Fluid Mech 495:323–341

    Article  Google Scholar 

  • Harlow F, Welch J (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    Article  Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Article  Google Scholar 

  • Kim J, Moin P (1985) Application of a fractional-step method to incompressible Navier–Stokes equations. J Comput Phys 59:308–323

    Article  Google Scholar 

  • Kirkil G, Mirocha J, Bou-Zeid E, Chow F, Kosović (2011) Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon Weather Rev 140:266–284

    Article  Google Scholar 

  • Kravchenko A, Moin P (1997) On the effect of numerical errors in large eddy simulations of turbulent flows. J Comput Phys 131(2):310–322

    Article  Google Scholar 

  • Lilly D (1966) The representation of small-scale turbulence in numerical simulation experiments. NCAR Manuscript 281. doi:10.5065/D62R3PMM

  • Lilly D (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635

    Article  Google Scholar 

  • Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23(065):101

    Google Scholar 

  • Lund T, Kaltenbach H (1995) Experiments with explicit filtering for LES using a finitedifference method. Annunual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, pp 91—105

  • Mason P (1989) Large-eddy simulation of the convective atmospheric boundary layer. J Atmos Sci 46:1492–1516

    Article  Google Scholar 

  • McAdams A, Sifakis E, Teran J (2010) A parallel multigrid Poisson solver for fluids simulation on large grids. In: Proceedings of Eurographics/ACM SIGGRAPH symposium on computer animation, pp 65–74

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32:1–32

    Article  Google Scholar 

  • Meneveau C, Lund T, Cabot W (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    Article  Google Scholar 

  • Moeng C (1984) A large-eddy simulationmodel for the study of planetary boundary-layer turbulence. J Atmos Sci 46:2311–2330

    Article  Google Scholar 

  • Morinishi Y, Lund T, Vasilyev O, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143:90–124

    Article  Google Scholar 

  • Najjar F, Tafti D (1996) Study of discrete test filters and finite difference approximations for the dynamic subgridscale stress model. Phys Fluids 8:1076–1088

    Article  Google Scholar 

  • Orszag S (1971) On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J Atmos Sci 28:1074–1074

    Article  Google Scholar 

  • Perry A, Henbest S, Chong M (1986) A theoretical and experimental study of wall turbulence. J Fluid Mech 165:163–199

    Article  Google Scholar 

  • Piomelli U (1993) High Reynolds number calculations using the dynamic subgrid scale stress model. Phys Fluids A 5:1484–1490

    Article  Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge, 563 pp

  • Porté-Agel F, Meneveau C, Parlange M (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Scotti A, Meneveau C, Lilly D (1993) Generalized Smagorinsky model for anisotropic grids. Phys Fluids 5:2306–2308

    Article  Google Scholar 

  • Sescu A, Meneveau C (2014) A control algorithm for statistically stationary large-eddy simulations of thermally stratified boundary layers. Q J R Meteorol Soc 140(683):2017–2022

    Article  Google Scholar 

  • Shetty D, Fisher T, Chunekar A, Frankel S (2013) High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows. J Comput Phys 229:8802–8822

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J (2008) A description of the advanced research, WRF Version 3. NCAR, Boulder CO

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Smits A, McKeon B, Marusic I (2011) High-Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375

    Article  Google Scholar 

  • Wu Y, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 138:345–366

    Article  Google Scholar 

  • Xie S, Archer C (2014) Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy. doi:10.1002/we1792

  • Xue M, Droegemeier K, Wond V (2000) The Advanced Regional Prediction System (ARPS): a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:161–193

    Article  Google Scholar 

  • Xue M, Droegemeier K, Wond V (2001) The Advanced Regional Prediction System (ARPS): a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165

    Article  Google Scholar 

  • Yang D, Meneveau C, Shen L (2014) Large-eddy simulation of offshore wind farm. Phys Fluids 26(2):025101

    Article  Google Scholar 

  • Yang K, Ferziger J (1993) Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale mode. AIAA J 31(8):1406–1413

    Article  Google Scholar 

  • Zang T (1991) On the rotation and skew-symmetric forms for incompressible flow simulations. Appl Numer Math 7:27–40

    Article  Google Scholar 

  • Zang Y, Street R, Koseff J (1993) A dynamics mixed subgrid-scale model and its application to turbulent recirulating flows. Phys Fluids A 5(12):3186–3196

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was funded by the National Science Foundation, Grant No. 1357649. All simulations in this research were conducted on the Mills High Performance Computer cluster of the University of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbai Xie.

Appendix

Appendix

1.1 Appendix 1: Planar-Averaged Scale-Invariant (PASI) SGS Model

Germano’s identity can be written as

$$\begin{aligned} L_{ij}=\overline{\widetilde{u}_{i}\widetilde{u}_{j}}-\overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}=T_{ij}-\overline{\tau }_{ij}, \end{aligned}$$
(20)

where \(\overline{(\cdot )}\) denotes a test filtering with filter width of \(\overline{\varDelta }=\alpha \varDelta \) and \(\alpha \) is usually taken as 2, \(L_{ij}\) is the resolved stress, and \(T_{ij}=\overline{\widetilde{u_{i}u_{j}}}-\overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}\) is the SGS stress at the test filter scale. The Smagorinsky model is used for the deviatoric part of \(T_{ij}\) as follows,

$$\begin{aligned} T_{ij}-\frac{1}{3}T_{kk}\delta _{ij}=-2\left( C_\mathrm{S}\alpha \varDelta \right) ^{2}|\overline{\widetilde{S}}|\overline{\widetilde{S}}_{ij}. \end{aligned}$$
(21)

Next Eqs. 3 and 21 are substituted into Eq. 20 to obtain the error

$$\begin{aligned} e_{ij}=L_{ij}-C_{\mathrm{S},\triangle }^{2}M_{ij}, \end{aligned}$$
(22)

where

$$\begin{aligned} M_{ij}=2\varDelta ^{2}\Big (\overline{|\widetilde{S}|\widetilde{S}_{ij}}-\alpha ^{2}\beta |\overline{\widetilde{S}}|\overline{\widetilde{S}}_{ij}\Big ), \end{aligned}$$
(23)

and

$$\begin{aligned} \beta =C_{\mathrm{S},\alpha \triangle }^{2}/C_{\mathrm{S},\triangle }^{2}. \end{aligned}$$
(24)

The parameter \(\beta \) is the ratio between the coefficients at the test filter scale and at the filter scale. By minimization of the error using a least-square approach, and assuming that \(\beta =1\) (i.e. \(C_\mathrm{S}\) is scale-invariant) (Lilly 1992), the Smagorinsky coefficient at the test filter scale is obtained as

$$\begin{aligned} C_\mathrm{S}^{2}=\frac{\langle L_{ij}M_{ij} \rangle }{\langle M_{ij}M_{ij}\rangle }, \end{aligned}$$
(25)

where \(\langle \cdot \rangle \) is a spatial average along the horizontal direction that eliminates numerical instability.

1.2 Appendix 2: Lagrangian-Averaged Scale-Invariant (LASI) SGS Model

On the basis of the PASI model, for general inhomogeneous turbulence where a spatial average is problematic, Meneveau et al. (1996) developed a weighted Lagrangian time average along the fluid trajectory as follows

$$\begin{aligned} C_\mathrm{S}^{2}=\frac{{\mathcal {J}}_{LM}}{{\mathcal {J}}_{LM}}, \end{aligned}$$
(26)

with

$$\begin{aligned} {\mathcal {J}}_{LM}=\int ^{t}_{-\infty }L_{ij}M_{ij}\Big (\varvec{x}\left( t'\right) ,t'\Big )W\left( t-t'\right) dt' \end{aligned}$$
(27)

and

$$\begin{aligned} {\mathcal {J}}_{LM}=\int ^{t}_{-\infty }M_{ij}M_{ij}\Big (\varvec{x}\left( t'\right) ,t'\Big )W\left( t-t'\right) dt', \end{aligned}$$
(28)

where \(W(t-t')=(1/T){\text {exp}}((t-t')/T)\) is the weighting function and T is chosen as \(T=1.5\varDelta ({\mathcal {J}}_{LM}{\mathcal {J}}_{MM})^{-1/8}\). The exponential form of \(W(t-t')\) allows using forward relaxation-transport equations to replace the backward time integrals as follows

$$\begin{aligned} \frac{D{\mathcal {J}}_{LM}}{Dt}=\frac{\partial {\mathcal {J}}_{LM}}{\partial t}+\widetilde{\varvec{u}}\cdot {\mathcal {J}}_{LM}=\frac{1}{T_{\varDelta }}(L_{ij}M_{ij}-{\mathcal {J}}_{LM}) \end{aligned}$$
(29)

and

$$\begin{aligned} \frac{D{\mathcal {J}}_{MM}}{Dt}=\frac{\partial {\mathcal {J}}_{MM}}{\partial t}+\widetilde{\varvec{u}}\cdot {\mathcal {J}}_{MM}=\frac{1}{T_{\varDelta }}(M_{ij}M_{ij}-{\mathcal {J}}_{MM}). \end{aligned}$$
(30)

By using first-order numerical time and space schemes, Eqs. 29 and 30 can be solved easily and economically to update \({\mathcal {J}}_{LM}\) and \({\mathcal {J}}_{MM}\) at each timestep.

1.3 Appendix 3: Lagrangian-Averaged Scale-Dependent (LASD) SGS Model

The assumption of scale-invariance of \(C_\mathrm{S}\), i.e. \(\beta =1\), is questionable. Porté-Agel et al. (2000) and Bou-Zeid et al. (2005) introduced scale-dependent approaches by using a second test filter at scale \(\widehat{\varDelta }=\alpha ^{2}\varDelta \) to calculate \(\beta \) dynamically. Following the Bou-Zeid et al. approach, by applying the Germano identity and minimizing the error at the second test filter scale, the coefficient at this scale can be obtained as

$$\begin{aligned} C_{\mathrm{S},\alpha ^{2}\triangle }^{2}=\frac{{\mathcal {J}}_{QN}}{{\mathcal {J}}_{NN}}, \end{aligned}$$
(31)

where \({\mathcal {J}}_{QN}\) and \({\mathcal {J}}_{NN}\) are Lagrangian-averaged \(Q_{ij}N_{ij}\) and \(N_{ij}N_{ij}\), respectively, and \(Q_{ij}=\widehat{\widetilde{u}_{i}\widetilde{u}_{j}}-\widehat{\widetilde{u}}_{i}\widehat{\widetilde{u}}_{j}\), \(N_{ij}=2\varDelta ^{2}\Big (\widehat{|\widetilde{S}|\widetilde{S}_{ij}}-\alpha ^{4}\beta ^{2}|\widehat{\widetilde{S}}|\widehat{\widetilde{S}}_{ij}\Big )\). Assuming that \(\beta \) is scale-invariant (this assumption is more reasonable than the scale-invariant assumption of \(C_\mathrm{S}\)), such that \(\beta =C_{\mathrm{S},\alpha ^{2}\triangle }^{2}/C_{\mathrm{S},\alpha \triangle }^{2}=C_{\mathrm{S},\alpha \triangle }^{2}/C_{\mathrm{S},\triangle }^{2}\), implies that,

$$\begin{aligned} C_{\mathrm{S},\triangle }^{2}=C_{\mathrm{S},\alpha \triangle }^{2}/\beta =\frac{{\mathcal {J}}_{LM}/{\mathcal {J}}_{MM}}{\Big (\frac{{\mathcal {J}}_{QN}/{\mathcal {J}}_{MM}}{{\mathcal {J}}_{NN}/{\mathcal {J}}_{LM}}\Big )}. \end{aligned}$$
(32)

1.4 Appendix 4: Test and Second Test Filters in the Physical Space

The spatial filtering to a variable f at location \(\varvec{x}\) is defined as the following convolution form

$$\begin{aligned} \widetilde{f}\left( \varvec{x}\right) =\int ^{+\infty }_{-\infty } \widetilde{G}\left( \varvec{x},\varvec{x}' \right) f\left( \varvec{x}'\right) \text {d}\varvec{x}', \end{aligned}$$
(33)

where \(\widetilde{G}\) is the filter kernel satisfying the property of

$$\begin{aligned} \int ^{+\infty }_{-\infty }\widetilde{G}\left( \varvec{x},\varvec{x}'\right) =1. \end{aligned}$$
(34)

Here, in conjunction with the finite-difference methods, two filters, i.e. box (or top-hat) filter and Gaussian filter, are tested for their simplicity and wide use in applications. Specifically, for a filter width \(\widetilde{\varDelta _{i}}\), the kernel of the 1D box filter is written as

$$\begin{aligned} \widetilde{G}(x_{i}-x'_{i})=\left\{ \begin{array}{ll} \frac{1}{\widetilde{\triangle _{i}}}, &{} {\, {\text {if}}\, |x_{i}-x'_{i}|\le \frac{\widetilde{\triangle _{i}}}{2};}\\ 0, &{} \,{\text {otherwise.}} \end{array}\right. \end{aligned}$$
(35)

Note that in the finite-difference discretization, the box filtering is implicitly applied at the filter width of the grid spacing (Najjar and Tafti 1996). For the 1D Gaussian filter, the kernel is

$$\begin{aligned} \widetilde{G}(x_{i}-x'_{i})=\Bigg (\frac{\gamma }{\pi \widetilde{\varDelta _{i}}^{2}}\Bigg )^{1/2}{\text {exp}} \Bigg (\frac{-\gamma |x_{i}-x'_{i}|^{2}}{\widetilde{\varDelta _{i}}^{2}}\Bigg ), \end{aligned}$$
(36)

where \(\gamma =6\) is generally used (Pope 2000; Brasseur and Wei 2010). Here, the filtering is performed in a 2D manner along the horizontal directions in the physical space, i.e.

$$\begin{aligned} \widetilde{f}\left( \varvec{x}\right) =\int ^{+\infty }_{-\infty } \widetilde{G}\left( x_{1}-x'_{1}\right) \widetilde{G} \left( x_{2}-x'_{2}\right) f\left( \varvec{x}'\right) \text {d}\varvec{x}'. \end{aligned}$$
(37)

Following previous finite-difference LES, the trapezoidal rule is used to calculate the discrete integral (Zang et al. 1993; Balaras et al. 1995; Najjar and Tafti 1996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Ghaisas, N. & Archer, C.L. Sensitivity Issues in Finite-Difference Large-Eddy Simulations of the Atmospheric Boundary Layer with Dynamic Subgrid-Scale Models. Boundary-Layer Meteorol 157, 421–445 (2015). https://doi.org/10.1007/s10546-015-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0071-3

Keywords

Navigation