Skip to main content
Log in

The Impact of Source Distribution on Scalar Transport over Forested Hills

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Numerical simulations of neutral flow over a two-dimensional, isolated, forested ridge are conducted to study the effects of scalar source distribution on scalar concentrations and fluxes over forested hills. Three different constant-flux sources are considered that span a range of idealized but ecologically important source distributions: a source at the ground, one uniformly distributed through the canopy, and one decaying with depth in the canopy. A fourth source type, where the in-canopy source depends on both the wind speed and the difference in concentration between the canopy and a reference concentration on the leaf, designed to mimic deposition, is also considered. The simulations show that the topographically-induced perturbations to the scalar concentration and fluxes are quantitatively dependent on the source distribution. The net impact is a balance of different processes affecting both advection and turbulent mixing, and can be significant even for moderate topography. Sources that have significant input in the deep canopy or at the ground exhibit a larger magnitude advection and turbulent flux-divergence terms in the canopy. The flows have identical velocity fields and so the differences are entirely due to the different tracer concentration fields resulting from the different source distributions. These in-canopy differences lead to larger spatial variations in above-canopy scalar fluxes for sources near the ground compared to cases where the source is predominantly located near the canopy top. Sensitivity tests show that the most significant impacts are often seen near to or slightly downstream of the flow separation or reattachment points within the canopy flow. The qualitative similarities to previous studies using periodic hills suggest that important processes occurring over isolated and periodic hills are not fundamentally different. The work has important implications for the interpretation of flux measurements over forests, even in relatively gentle terrain and for neutral flow. To understand fully such measurements it is necessary not only to understand the flow structure (given the site characteristics) but also to know the distribution of scalar sources and sinks in the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgments

We would like to thank John Finnigan and Eva van Gorsel for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Ross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, A.N., Harman, I.N. The Impact of Source Distribution on Scalar Transport over Forested Hills. Boundary-Layer Meteorol 156, 211–230 (2015). https://doi.org/10.1007/s10546-015-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0029-5

Keywords

Navigation