Skip to main content
Log in

Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are considered as being promising biomarkers for hematological malignancies, their aging, progression and prognosis. The authors have developed a method for the detection of miRNA-155 by using surface plasmon resonance (SPR) imaging coupled to a nucleic acid-based amplification strategy using gold nanoparticles (AuNPs). The target miRNA-155 is captured by surface-bound DNA probes. After hybridization, DNA-AuNP are employed for signal amplification via DNA sandwich assembly, resulting in a large increase in the SPR signal. This method can detect miRNA-155 in concentrations down to 45 pM and over dynamic that extends from 50 pM to 5 nM. The assay is highly specific and can discriminate even a single base mismatch. It also is reproducible, precise, and was successfully applied to the determination of miRNA-155 in spiked real samples where it gave recoveries in the range between 86% and 98%. This biosensor provides an alternative approach for miRNA detection in biomedical research and clinical diagnosis, which is highly effective and efficient.

Schematic of a surface plasmon resonance imaging biosensor for detection of miRNA-155 using strand displacement amplification and gold nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  2. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8(1):1

    Article  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  4. Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, Hoona MJL, Kubosakia A, Kaihoa A, Suzukia M, Yasudaa J, Kawaia J, Hayashizakia Y, Humec DA, Suzukia H (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24(2):460–466

    Article  CAS  Google Scholar 

  5. Tili E, Michaille JJ, Croce CM (2013) MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 253(1):167–184

    Article  Google Scholar 

  6. Jurkovicova D, Magyerkova M, Kulcsar L, Krivjanska M, Krivjansky V, Gibadulinova A, Oveckova I, Chovanec M (2014) miR-155 as a diagnostic and prognostic marker in hematological and solid malignancies. Neoplasma 61(3):241–251

    Article  CAS  Google Scholar 

  7. Várallyay É, Burgyán J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3(2):190–196

    Article  Google Scholar 

  8. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) Michip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3:321–329

    Article  CAS  Google Scholar 

  9. Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  Google Scholar 

  10. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301

    Article  CAS  Google Scholar 

  11. Bartosik M, Hrstka R, Palecek E, Vojtesek B (2014) Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Anal Chim Acta 813:35–40

    Article  CAS  Google Scholar 

  12. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325

    Article  CAS  Google Scholar 

  13. Cheng Y, Lei JP, Chen YL, Ju HX (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  Google Scholar 

  14. Bi S, Cui YY, Li L (2013) Dumbbell probe-mediated cascade isothermal amplification: a novel strategy for label-free detection of microRNAs and its application to real sample assay. Anal Chim Acta 760:69–74

    Article  CAS  Google Scholar 

  15. Ye LP, Hu J, Liang L, Zhang CY (2014) Surface-enhanced raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chem Commun 50:11883–11886

    Article  CAS  Google Scholar 

  16. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  17. Šípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23

    Article  Google Scholar 

  18. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  CAS  Google Scholar 

  19. Lausted C, Hu Z, Hood L, Campbell CT (2009) SPRi for high throughput, label-free interaction analysis. Comb Chem High Throughput Screen 12(8):741–751

    Article  CAS  Google Scholar 

  20. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392

    Article  CAS  Google Scholar 

  21. Wu J, Huang Y, Bian X, Li D, Cheng Q, Ding S (2016) Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system. Opt Commun 377:24–32

    Article  CAS  Google Scholar 

  22. Ding X, Yan Y, Li S, Zhang Y, Cheng W, Cheng Q, Ding S (2015) Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta 874:59–65

    Article  CAS  Google Scholar 

  23. He P, Qiao W, Liu L, Zhang S (2014) A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy. Chem Commun 50(73):10718–10721

    Article  CAS  Google Scholar 

  24. Shi C, Liu Q, Ma C, Zhong W (2013) Exponential strand-displacement amplification for detection of microRNAs. Anal Chem 86(1):336–339

    Article  Google Scholar 

  25. Ren R, Leng C, Zhang S (2010) Detection of DNA and indirect detection of tumor cells based on circular strand-replacement DNA polymerization on electrode. Chem Comm 46(31):5758–5760

    Article  CAS  Google Scholar 

  26. Yu TX, Cheng W, Li Q, Luo CH, Yan L, Zhang DC, Yin YB, Ding SJ, Ju HX (2012) Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 93:433–438

    Article  CAS  Google Scholar 

  27. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609.32

    Article  CAS  Google Scholar 

  28. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238

    Article  CAS  Google Scholar 

  29. Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Fluorescence imaging of surface plasmon fields. Appl Phys Lett 80:404

    Article  CAS  Google Scholar 

  30. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Soc Rev 107(11):4797–4862

    Article  CAS  Google Scholar 

  31. Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180(5–6):397–403

    Article  CAS  Google Scholar 

  32. Liu T, Chen X, Hong CY, Xu XP, Yang HH (2014) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181(7–8):731–736

    Article  CAS  Google Scholar 

  33. Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly (amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182(1–2):77–84

    Article  CAS  Google Scholar 

  34. Wang M, Shen B, Yuan R, Cheng W, Xu H, Ding S (2015) An electrochemical biosensor for highly sensitive determination of microRNA based on enzymatic and molecular beacon mediated strand displacement amplification. J Electroanal Chem 756:147–152

    Article  CAS  Google Scholar 

  35. Wang M, Yang Z, Guo Y, Wang X, Yin H, Ai S (2015) Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode. Microchim Acta 182(1–2):241–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC, No. 21205098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyin Peng.

Ethics declarations

The authors declare that all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, K., Li, H. & Peng, Y. Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184, 2637–2644 (2017). https://doi.org/10.1007/s00604-017-2276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2276-2

Keywords

Navigation