Skip to main content
Log in

Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, three categories of ECG electrodes were fabricated. Graphene/PDMS(Polydimethylsiloxane)(G-I), Graphene/MWCNT-COOH(Carboxylic-acid functionalized Multi-walled Carbon Nanotubes)/PDMS(G-II),and Graphene/SWCNT-COOH(Carboxylic-acid functionalized Single-walled Carbon Nanotubes)/PDMS(G-III). Each group had thirteen electrodes with varying concentrations ranging from 0.1-5wt%. Since CNTs get tangled easily, it becomes necessary to disperse them properly. To achieve optimal dispersion, CNTs were first sonicated with Isopropyl Alcohol (IPA), and then with PDMS. Mold casting was the technique used for fabricating the electrodes. The results were compared with the conventional ECG electrodes. Best results were achieved from G-III at 3wt% as the value of capacitance is high (0.172nF) as compared to G-I and G-III values at 3wt% which are 0.036nF (0.036nF) and 0.015nF respectively. As capacitance has an inverse relationship with the resistance and impedance, thus at 3wt% the resistance (0.361MΩ) and impedance (0.36MΩ) values are low, which satisfies the relationship. The values of resistance and impedance of G-II are low when compared with the values of G-I and G-II. Great results and ECG waveform are achieved with 3wt% for G-II, which also uses less nanomaterials to produce such great ECG results. It was observed that even after using the electrodes for 5 days, the ECG signal did not degrade over time and no skin allergies were detected for any of the three groups. The ECG tracking system was developed on the concept of the Internet-of-Things (IoT) using various electronic hardware components and software solutions. The results from the fabricated electrodes were promising and were suitable for long-term, and continuous ECG monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nallanthighal Srinivasa Raghava.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, B., Raghava, N. Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications. Biomed Microdevices 24, 29 (2022). https://doi.org/10.1007/s10544-022-00630-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-022-00630-2

Keywords

Navigation