Skip to main content
Log in

Development of an Integrated Surface Stimulation Device for Systematic Evaluation of Wound Electrotherapy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ideally, all chronic wounds would be prevented as they can become life threatening complications. The concept that a wound produces a ‘current of injury’ due to the discontinuity in the electrical field of intact skin provides the basis for the concept that electrical stimulation (ES) may provide an effective treatment for chronic wounds. The optimal stimulation waveform parameters are unknown, limiting the reliability of achieving a successful clinical therapeutic outcome. In order to gain a more thorough understanding of ES for chronic wound therapy, systematic evaluation using a valid in vivo model is required. The focus of the current paper is development of the flexible modular surface stimulation (MSS) device by our group. This device can be programed to deliver a variety of clinically relevant stimulation paradigms and is essential to facilitate systematic in vivo studies. The MSS version 2.0 for small animal use provides all components of a single-channel, programmable current-controlled ES system within a lightweight, flexible, independently-powered portable device. Benchtop testing and validation indicates that custom electronics and control algorithms support the generation of high-voltage, low duty-cycle current pulses in a power-efficient manner, extending battery life and allowing ES therapy to be delivered for up to 7 days without needing to replace or disturb the wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

η :

Voltage step-up efficiency

ADC:

Analog-to-digital converter

CNC:

Computer numerical control

D :

Switch duty factor

DC:

Direct current

ES:

Electrical stimulation

FDA:

Food and Drug Administration

LCP:

Liquid crystal polymer

MOSFET:

Metal–oxide–semiconductor field-effect transistor

MSS:

Modular surface stimulation

NHS:

National Health Service (UK)

PCB:

Printed circuit board

PWM:

Pulse-width modulated

R FB :

Voltage divider resistance

T :

Boost converter clock period

US:

United States

UK:

United Kingdom

V BATT :

Battery voltage

V OUT :

Output voltage

References

  1. Assimacopoulos, D. Wound healing promotion by the use of negative electric current. Am. Surg. 34(6):423–431, 1968.

    CAS  PubMed  Google Scholar 

  2. Aziz, Z., and K. Flemming. Electromagnetic therapy for treating pressure ulcers. Cochrane Database Syst. Rev. 12:CD002930, 2012.

    PubMed  Google Scholar 

  3. Bergstrom, N., M. A. Bennett, C. E. Carlson, et al. Treatment of Pressure Ulcers. Clinical Practice Guideline, No. 15. Rockville, MD: US Department of Health and Human Services. Public Health Service, Agency for Health Care Policy and Research. AHCPR Publication No. 95-0652. December 1994.

  4. Bogie, K. M., S. I. Reger, and S. P. Levine. Electrical stimulation for pressure sore prevention and wound healing. Assist. Technol. 12(1):50–66, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Butcher, M. How to use Posifect® bio-electric stimulation therapy in chronic wounds. Wound Essent. 2:186–193, 2007.

    Google Scholar 

  6. Cho, C. Y., and J. S. Lo. Dressing the part. Dermatol. Clin. 16(1):25–47, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Cullum, N., E. A. Nelson, K. Flemming, and T. Sheldon. Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. Health Technol. Assess. 5(9):1–211, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Davies, D. J., R. J. Ward, and J. R. Heylings. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol. In Vitro 18(3):351–358, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Dealey, C., J. Posnett, and A. Walker. The cost of pressure ulcers in the United Kingdom. J. Wound Care. 21(6):261–262, 264, 266, 2012.

  10. European Pressure Ulcer Advisory Panel and National Pressure Ulcer Advisory Panel. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Washington, DC: National Pressure Ulcer Advisory Panel, 2009.

  11. Feedar, J. A., L. C. Kloth, and G. D. Gentzkow. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys. Ther. 71(9):639–649, 1991.

    CAS  PubMed  Google Scholar 

  12. Field, F. K., and M. D. Kerstein. Overview of wound healing in a moist environment. Am. J. Surg. 167(1A):2S–6S, 1994.

    Article  CAS  PubMed  Google Scholar 

  13. Gardner, S. E., R. A. Frantz, and F. L. Schmidt. Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen. 7(6):495–503, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Gist, S., I. Tio-Matos, S. Falzgraf, S. Cameron, and M. Beebe. Wound care in the geriatric client. Clin. Interv. Aging 4:269–287, 2009; ((Epub 2009 Jun 9)).

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Graebert, J. K., M. K. Henzel, K. S. Honda, and K. M. Bogie. Systemic evaluation of electrical stimulation for ischemic wound therapy in a pre-clinical in vivo model. Adv. Wound Care 3(6):428–437, 2014.

    Article  Google Scholar 

  16. Henzel, M. K., D. S. Howe, J. Graebert, and K. M. Bogie. Optimization of a rat ischemic wound model for evaluation of the effects of electrotherapy on wound healing. 22nd Annual Meeting of the Wound Healing Society SAWC-Spring/WHS Joint Meeting. Wound Repair and Regeneration, Vol. 20, p. A24, 2012.

  17. Houghton, P. E., K. E. Campbell, C. H. Fraser, C. Harris, D. H. Keast, P. J. Potter, K. C. Hayes, and M. G. Woodbury. Electrical stimulation therapy increases rate of healing of pressure ulcers in community-dwelling people with spinal cord injury. Arch. Phys. Med. Rehabil. 91(5):669–678, 2010.

    Article  PubMed  Google Scholar 

  18. Kannon, G. A., and A. B. Garrett. Moist wound healing with occlusive dressings. A clinical review. Dermatol. Surg. 21(7):583–590, 1995.

    Article  CAS  PubMed  Google Scholar 

  19. Kloth, L. C. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int. J. Low Extrem. Wounds. 4(1):23–44, 2005.

    Article  PubMed  Google Scholar 

  20. LGMedSupply LLC, “TENS Unit, EMS Unit, LG-TEC ELITE Combo TENS/Muscle Stimulator,” 11/02/2011. http://www.lgmedsupply.com/lgelteunandm.html. Accessed 05/09/2014.

  21. Lukaski, H. C., and M. Moore. Bioelectrical impedance assessment of wound healing. J. Diabetes Sci. Technol. 6(1):209–212, 2012; ((Review)).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Markova, A., and E. N. Mostow. US skin disease assessment: ulcer and wound care. Dermatol Clin 30(1):107–111, 2012; ((ix)).

    Article  CAS  PubMed  Google Scholar 

  23. Metzger, S. Clinical and financial advantages of moist wound management. Home Healthc. Nurse 22(9):586–590, 2004.

    Article  PubMed  Google Scholar 

  24. National Coverage Determination (NCD) for Electrical Stimulation (ES) and Electromagnetic Therapy for the Treatment of Wounds (270.1). http://www.cms.hhs.gov/Transmittals/Downloads/R166CIM.pdf.

  25. Never Events, SMDL #08-004 Centers for Medicare & Medicaid Services Department of Health & Human Services, 2008. Accessed 04/11/2014.

  26. Nuccitelli, R. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58:1–26, 2003.

    Article  PubMed  Google Scholar 

  27. Pressman, A. I., et al. The boost switching regulator topology. In: Switching power supply design. New York: McGraw-Hill, pp. 31–40, 2009.

  28. Rippon, M., P. Davies, and R. White. Taking the trauma out of wound care: the importance of undisturbed healing. J. Wound Care. 21(8):359–360, 362, 364–368, 2012.

  29. Rodger, D. C., A. F. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, and Y.-C. Tai. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuators B Chem. 32(2):449–460, 2008. doi:10.1016/j.snb.2007.10.069.

    Article  Google Scholar 

  30. Werdin, F., M. Tennenhaus, H. Schaller, and H. Rennekampff. Evidence-based management strategies for treatment of chronic wounds. Eplasty 9:e19, 2009.

Download references

Acknowledgments

This work was supported in part by the US Department of Veterans Affairs Advanced Platform Technology Center of Excellence (APT Center). The authors would like to thank Dr. M. Kristi Henzel and Jennifer Graebert for proving valuable feedback on benchtop testing relevant to translational implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Bogie.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howe, D.S., Dunning, J., Zorman, C. et al. Development of an Integrated Surface Stimulation Device for Systematic Evaluation of Wound Electrotherapy. Ann Biomed Eng 43, 306–313 (2015). https://doi.org/10.1007/s10439-014-1134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1134-1

Keywords

Navigation