Skip to main content
Log in

Vertical flow paper-based plasmonic device for cysteine detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cystinuria, is an autosomal recessive genetic disorder involving increasingly high levels of poorly soluble cysteine in urine leading to formation of stones. Developing a facile, low-cost, point-of-care and selective sensor for diagnosis of cysteine is imperative. Accordingly, for the detection of cysteine, the present study demonstrates an inexpensive colorimetric, paper-based vertical flow plasmonic micro-well device with a two-minute turn-around time. The method encompasses the use of microbially-synthesized silver nanoparticles (AgNPs) that change from light brown / yellow to dark brown upon binding with Sulphur present in cysteine. This technique allows for visual detection up to 1 × 10−5 mM cysteine and can be easily offered as a rapid diagnostic test even at setups with minimal resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • V.V. Apyari, V.V. Arkhipova, A.I. Isachenko, P.A. Volkov, S.G. Dmitrienko, I.I. Torocheshnikova, Sensors Actuators B Chem. 260, 953–961 (2018)

    Article  Google Scholar 

  • M.J. Betts, R.B. Russell, Bioinformatics for geneticists (2003), pp. 289–316

    Book  Google Scholar 

  • C.S. Biyani, J.J. Cartledge, EAU-EBU update series 4, 175–183 (2006)

    Article  Google Scholar 

  • D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry, Anal. Chem. 87, 19–41 (2015)

    Article  Google Scholar 

  • Z. Chen, S. Luo, C. Liu, Q. Cai, Anal. Bioanal. Chem. 395, 489–494 (2009)

    Article  Google Scholar 

  • T.A. Dankovich, Environ. Sci. Nano 1, 367–378 (2014)

    Article  Google Scholar 

  • P. Devaraj, P. Kumari, C. Aarti, A. Renganathan, J. Nanotechnol 2013, 598328 (2013) 5 pages

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Analyst 136, 77–82 (2011)

    Article  Google Scholar 

  • S. Fernandes, M. Mota, N. Lima, Nanosci. Nanotechnol. 5, 14–21 (2010)

    Google Scholar 

  • A. Guerra, M. Petrarulo, T. Schianchi, F. Allegri, T. Meschi, M. Bruno, A. Ramello, M. Baruffaldi, A. Novarini, L. Borghi, Lab. Med. 33, 214–217 (2002)

    Article  Google Scholar 

  • S. He, J. Yao, S. Xie, S. Pang, H. Gao, Chem. Phys. Lett. 343, 28–32 (2001)

    Article  Google Scholar 

  • S. Huang, Q. Xiao, R. Li, H.L. Guan, J. Liu, X.R. Liu, Z.K. He, Y. Liu, Anal. Chim. Acta 645, 73–78 (2009)

    Article  Google Scholar 

  • V.A. Kumar, T. Uchida, T. Mizuki, Y. Nakajima, Y. Katsube, T. Hanajiri, T. Maekawa, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 015002 (2016)

    Article  Google Scholar 

  • K. Kusmierek, R. Glowacki, E. Bald, Anal. Bioanal. Chem. 385, 855–860 (2006)

    Article  Google Scholar 

  • J.-S. Lee, P.A. Ulmann, M.S. Han, C.A. Mirkin, Nano Lett. 8, 529–533 (2008)

    Article  Google Scholar 

  • C.H. Lee, L. Tian, S. Singamaneni, ACS Appl. Mater. Interfaces 2, 3429–3435 (2010)

    Article  Google Scholar 

  • H. Li, Z. Cui, C. Han, Sensors Actuators B Chem. 143, 87–92 (2009)

    Article  Google Scholar 

  • L.-Q. Lu, Q. Gao, C. Song, X.-K. Tian, A.-W. Xu, RSC Adv. 4, 27297–27300 (2014)

    Article  Google Scholar 

  • L. Luo, X. Li, R.M. Crooks, Anal. Chem. 86, 12390–12397 (2014)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta, G.M. Whitesides, Lab Chip 8, 2146–2150 (2008)

    Article  Google Scholar 

  • S.M. Mehta, M.P. Sequeira, H. Muthurajana, J.S. D’Souza, Appl. Nanosci., 1–11 (2018)

  • N.M. Myers, E.N. Kernisan, M. Lieberman, Anal. Chem. 87, 3764–3770 (2015)

    Article  Google Scholar 

  • P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, R. Díaz, Appl. Surf. Sci. 258, 8807–8813 (2012)

    Article  Google Scholar 

  • A. Ravindran, S.P. Dhas, N. Chandrasekaran, A. Mukherjee, J. Exp. Nanosci. 8, 589–595 (2013)

    Article  Google Scholar 

  • O. Rusin, N.N.S. Luce, R.A. Agbaria, J.O. Escobedo, S. Jiang, I.M. Warner, F.B. Dawan, K. Lian, R.M. Strongin, J. Am. Chem. Soc. 126, 438–439 (2004)

    Article  Google Scholar 

  • N. Sumorok, D.S. Goldfarb, Curr. Opin. Nephrol. Hypertens. 22, 427–431 (2013)

    Article  Google Scholar 

  • O. Traxer, E. Lechevallier, C. Saussine, Prog. Urol. 18, 832–836 (2008)

    Article  Google Scholar 

  • P. Uznanski, J. Zakrzewska, F. Favier, S. Kazmierski, E. Bryszewska, J. Nanopart. Res. 19, 121 (2017)

    Article  Google Scholar 

  • A. Vasil’kov, R. Dovnar, S. Smotryn, N. Iaskevich, A. Naumkin, Antibiotics 7, 80 (2018)

    Article  Google Scholar 

  • J.E. Wear, B.G. Keevil, Clin. Chem. 51, 787–789 (2005)

    Article  Google Scholar 

  • R.F. Zeng, J.S. Lan, X.D. Li, H.F. Liang, Y. Liao, Y.J. Lu, T. Zhang, Y. Ding, Molecules, 22 (2017)

  • H. Zhang, W. Feng, G. Feng, Dyes Pigments 139, 73–78 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta S. D’Souza.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.M., Mehta, S., Muthurajan, H. et al. Vertical flow paper-based plasmonic device for cysteine detection. Biomed Microdevices 21, 55 (2019). https://doi.org/10.1007/s10544-019-0399-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0399-4

Keywords

Navigation