Skip to main content
Log in

Systematic approach for the formulation and optimization of atorvastatin loaded solid lipid NANOAPARTICLES using response surface methodology

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Atorvastatin is a lipid lowering agent with poor oral bioavailability (12%) because of poor solubility and extensive first pass hepatic metabolism. In order to overcome these issues, atorvastatin loaded solid lipid nanoparticles (ATOR-SLNs) were prepared by using glyceryl tripalmitate as lipid carrier, poloxamer 407 as surfactant and soya lecithin as emulsifier. The purpose of this work was to optimize the formulation with the application of response surface methodology to improve the physicochemical properties. The central composite rotatable design consisting of three factored factorial design with three levels was used for the optimization of the formulations. The optimized formulation was composed of drug/lipid ratio of 1:3.64, surfactant concentration of 1.5% with 5 min time for sonication. Fourier transforms infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies confirmed the compatibility of drug and lipid in the formulation. The optimized ATOR- SLNs showed almost spherical shape with a mean particle size of 338.5 nm, zeta potential of -24.7mV, DL of 17.7% and EE of 81.06% respectively. The in vitro drug release study showed a burst release at the initial stage followed by the prolongation of drug release from lipid matrix. Stability study revealed that ATOR-SLNs were more stable at 4±2˚C when compared with storage at 25±2˚C/60±5% RH during the six months storage period. These results indicated that the developed ATOR-SLNs is a promising approach for increment of bioavailability by improving the physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • J.H. Ahn, Y.P. Kim, Y.M. Lee, E.M. Seo, K.W. Lee, H.S. Kim, Food Chem. 107, 98–105 (2008)

    Article  Google Scholar 

  • L. Battaglia, M. Trotta, M. Gallarate, M.E. Carlotti, G.P. Zara, A. Bargoni, J. Microencapsul. 7, 660–672 (2007)

    Google Scholar 

  • M.L. Bondi, R. Di, E.F.C. Gesu, Methods Enzymol. 508, 229–251 (2012)

    Article  Google Scholar 

  • G.E.P. Box, J.S. Hunter, Ann. Math. Stat. 28, 195–241 (1957)

    Article  Google Scholar 

  • S. Gande, M. Kopparam, V. Vobalaboina, S. Vemula, AAPS PharmSciTech 8(1), 1–9 (2007)

    Article  Google Scholar 

  • F.Q. Hu, S.P. Jiang, Y.Z. Du, H. Yuan, Y.Q. Ye, S. Zeng, Colloids Surf. B Biointerfaces 45, 167–173 (2005)

    Article  Google Scholar 

  • L.J. Jia, D.R. Zhang, Z.Y. Li, F.F. Feng, Y.C. Wang, W.T. Dai, Drug Deliv. 17, 11–18 (2010)

    Article  Google Scholar 

  • N.K. Kapur, K. Musunuru, Vasc. Health Risk Manag. 4(2), 341–353 (2008)

    Article  Google Scholar 

  • L.S. Kassama, J. Shi, G.S. Mittal, Sep. Purif. Technol. 60, 278–284 (2008)

    Article  Google Scholar 

  • Y.C. Kuo, S.J. Cheng, Int. J. Pharm. 499(1–2), 10–19 (2016)

    Article  Google Scholar 

  • Y.C. Kyo, J.F. Chung, Colloids Surf. B Biointerfaces 83, 299–306 (2011)

    Article  Google Scholar 

  • M.J. Lawrence, G.D. Rees, Adv. Drug Deliv. Rev. 45(1), 89–121 (2000)

    Article  Google Scholar 

  • Z. Li, W. Tao, D. Zhang, C. Wu, B. Song, S. Wang, T. Wang, M. Hu, X. Liu, Y. Wang, Y. Sun, J. Sun, Asian J. Pharm. 12, 285–291 (2017)

    Google Scholar 

  • C. Liu, C. Wu, J. Fang, Drug Dev. Ind. Pharm. 36(7), 751–761 (2010)

    Article  Google Scholar 

  • W. Mehnert, K. Mader, Adv. Drug Deliv. Rev. 47, 165–196 (2001)

    Article  Google Scholar 

  • A. Mishra, P.R. Vuddanda, S. Singh, J. Nanotechnol. 2014, 1–12 (2014)

    Article  Google Scholar 

  • A.K. Mohanty, F. Dilnawaz, C. Mohanty, S.K. Sahoo, Drug Deliv. 17(5), 330–342 (2010)

    Article  Google Scholar 

  • R.H. Muller, K. Mader, S. Gohla, Eur. J. Pharm. Biopharm. 50, 161–177 (2000)

    Article  Google Scholar 

  • R.H. Muller, C. Jacob, O. Kayser, Adv. Drug Deliv. Rev. 47, 3–19 (2001)

    Article  Google Scholar 

  • P. Mura, M.T. Faucci, G.P. Bettinetti, Eur. J. Pharm. Sci. 13(2), 187–194 (2001)

    Article  Google Scholar 

  • R.H. Myers, D.C. Montgomery, Response Surface Methodology (Wiley, New York, 1995)

    MATH  Google Scholar 

  • R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, New York, 2002)

    MATH  Google Scholar 

  • A. Parker, P.D. Thompson, Exerc. Sport Sci. Rev. 40(4), 188–194 (2012)

    Google Scholar 

  • C.W. Pouton, C.J.H. Porter, Adv. Drug Deliv. Rev. 6, 625–637 (2008)

    Article  Google Scholar 

  • M. Radtke, B.E. Souto, R.H. Muller, Pharm. Technol. Eur. 17(4), 45–50 (2005)

    Google Scholar 

  • M. Shah, K. Pathak, AAPS PharmSciTech 11, 489–496 (2010)

    Article  Google Scholar 

  • K.A. Shah, A.A. Date, M.D. Joshi, V.B. Patravale, Int. J. Pharm. 2, 63–171 (2007)

    Google Scholar 

  • A. Siddiqui, A. Alayoubi, Y. El-Malah, S. Nazzal, Pharm. Dev. Technol., 1–5 (2013)

  • B. Sjostrom, B. Bergenstahl, B. Kronberg, J. Pharm. Sci. 82, 584–589 (1993)

    Article  Google Scholar 

  • C. Stancu, A. Sima, J. Cell. Mol. Med. 5, 378–387 (2001)

    Article  Google Scholar 

  • A.P. Stapleton, G.A. Good Will, E.M. James, W.R. Brock, C.J. Frisbee, J. Inflamm. 7(54), 54 (2010)

    Article  Google Scholar 

  • V.J. Stella, R.A. Rajewski, Pharm. Res. 14, 556–567 (1997)

    Article  Google Scholar 

  • N. Tiong, A.A. Elkordy, Eur. J. Pharm. Biopharm. 73(3), 373–384 (2009)

    Article  Google Scholar 

  • A. Trapani, J. Sitterberg, U. Bakowsky, T. Kissel, Int. J. Pharm. 375, 97–106 (2009)

    Article  Google Scholar 

  • M. Trotta, F. Debernardi, O. Caputo, Int. J. Pharm. 2, 153–160 (2003)

    Article  Google Scholar 

  • V. Venkateswarlu, K. Manjunath, J. Control. Release 95(3), 627–638 (2004)

    Article  Google Scholar 

  • H. Yuan, J. Miao, Y.Z. Du, J. You, F.Q. Hu, S. Zeng, Int. J. Pharm. 348,137–145(2008)

Download references

Acknowledgements

Babita Sarangi is thankful to UGC, Government of India, for providing UGC-BSR fellowship. The authors acknowledge M/s Dr. Reddy’s Laboratories Ltd. Hyderabad (India) for providing atorvastatin calcium USP and M/s Sasol (Witten, Germany) for providing glyceryl tripalmitate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babita Sarangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, B., Jana, U., Sahoo, J. et al. Systematic approach for the formulation and optimization of atorvastatin loaded solid lipid NANOAPARTICLES using response surface methodology. Biomed Microdevices 20, 53 (2018). https://doi.org/10.1007/s10544-018-0285-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0285-5

Keywords

Navigation