Skip to main content

Advertisement

Log in

Measuring 3D-orthodontic actions to guide clinical treatments involving coil springs and miniscrews

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The understanding of the phenomena at the base of tooth movement, due to orthodontic therapy, is an ambitious topic especially with regard to the “optimal forces” able to move teeth without causing irreversible tissue damages. To this aim, a measuring platform for detecting 3D orthodontic actions has been developed. It consists of customized load cells and dedicated acquisition electronics. The force sensors are able to detect, simultaneously and independently of each other, the six orthodontic components which a tooth is affected by. They have been calibrated and then applied on a clinical case that required NiTi closed coil springs and miniscrews for the treatment of upper post-extraction spaces closure. The tests have been conducted on teeth stumps belonging to a plaster cast of the patient’s mouth. The load cells characteristics (sensor linearity and repeatability) have been analyzed (0.97 < R 2 < 1; 6.3*10 −6 % < STD < 8.8 %) and, on the basis of calibration data, the actions exerted on teeth have been determined. The biomechanical behavior of the frontal group and clinical interpretation of the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Acar, U. Canyurek, M. Kocaaga, N. Erverdi, Angle. Orthod. 69, 2 (1999)

    Google Scholar 

  • K.L. Andersen, E.H. Pedersen, B. Melsen, Am. J. Orthod. Dentofacx. Orthop. 99, 5 (1991)

    Google Scholar 

  • H.M. Badawi, R.W. Toogood, J.P. Carey, G. Heo, P.W. Major, Am. J. Orthod. Dentofac.Orthop. 136, 4 (2009)

    Article  Google Scholar 

  • S.A. Badran, J.F. Orr, M. Stevenson, D.J. Burden, Eur. J. Orthodont. 25, 2 (2003)

    Article  Google Scholar 

  • D.J. Ballard, A.S. Jones, P. Petocz, M.A. Darendeliler, Am. J. Orthod. Dentofac. Orthop. 136, 1 (2009)

    Article  Google Scholar 

  • C. Bourauel, D. Drescher, M. Their, J. Biomed. Eng. 14, 5 (1992)

    Article  Google Scholar 

  • M.M.V. Bulcke, C.J. Burstone, R.C.L.R. Sachdeva, Am. J. Orthod. Dentofac. Orthop. 91, 5 (1987)

    Google Scholar 

  • D. Cantarella, L. Lombardo, H.B. Moon, G. Siciliani, Eur. J. Clin. Orthod. 2, 2 (2014)

    Google Scholar 

  • P.M. Cattaneo, M. Dalstra, B. Melsen, J. Dent. Res. 84, 5 (2005)

    Article  Google Scholar 

  • P.M. Cattaneo, M. Dalstra, B. Melsen, Orthod. Craniofac. Res. 12, 2 (2009)

    Article  Google Scholar 

  • J. Chen, I. Bulucea, T.R. Katona, S. Ofner, Am. Orthod. Dentofac. Orthop. 132, 2 (2007)

    Article  Google Scholar 

  • J. Chen, S.C. Isikbay, E.J. Brizendine, Angle. Orthod. 80, 4 (2010)

    Google Scholar 

  • G. Daljit, Orthodontics at a glance Wiley-Blackwell (2013)

  • R.M. Faltin, K. Faltin, F.G. Sander, V.E. Arana Chavez, Eur. J. Orthodont. 23, 1 (2001)

    Article  Google Scholar 

  • D. Friedrich, N. Rosarius, G. Rau, P. Diedrich, J. Biomech. 32, 1 (1999)

    Article  Google Scholar 

  • L.M. Fuck, D. Drescher, J. Orofac. Orthop. 67, 1 (2006)

    Article  Google Scholar 

  • M. Hinterkausen, C. Bourauel, G. Siebers, A. Haase, D. Drescher, B. Nellen, Med. Eng. Phys. 20, 1 (1998)

    Article  Google Scholar 

  • K. Hodges, Concepts in nonsurgical periodontal therapy cengage learning (1998)

  • M.H. Jung, T.W. Kim, J. Clin. Orthod. 42, 2 (2008a)

    Google Scholar 

  • M.H. Jung, T.W. Kim, J. Clin. Orthod. 42, 3 (2008b)

    Google Scholar 

  • T.R. Katona, S.C. Isikbay, J. Chen, Angle. Orthod. 84, 2 (2014)

    Google Scholar 

  • T. Konoo, Y.J. Kim, G.M. Gu, G.J. King, J. Dent. Res. 80, 2 (2001)

    Article  Google Scholar 

  • B. Kuo, K. Takakuda, H. Miyairi, J. Med, Dent. Sci. 48, 1 (2001)

    Google Scholar 

  • B. Lapatki, J. Bartholomeyczik, P. Ruther, I. Jonas, O. Paul, J. Dent, Res. 86, 1 (2007)

    Google Scholar 

  • N.J.P. McGuinness, A.N. Wilson, M.L. Jones, J. Middleton Eur, J. Orthodont. 13, 3 (1991)

    Google Scholar 

  • B. Melsen, Angle Orthod. 69, 2 (1999)

    Google Scholar 

  • M. Mencattelli, E. Donati, M. Cultrone, C. Stefanini, Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS International Conference on IEEE (2014)

  • M. Mencattelli, E. Donati, M. Cultrone, C. Stefanini, Am. J. Orthod. Dentofac. Orthop. 148, 1 (2015)

    Article  Google Scholar 

  • N. Mittal, Z. Xia, J. Chen, K.T. Stewart, S.S. Liu, Angle Orthod. 83, 3 (2013)

    Article  Google Scholar 

  • A.N. Natali, P.G. Pavan, E.L. Carniel, C. Dorow, Connect. Tissue Res. 45, 4–5 (2004a)

    Article  Google Scholar 

  • A.N. Natali, P.G. Pavan, C. Scarpa, Dent. Mater. 20, 7 (2004b)

    Article  Google Scholar 

  • A.N. Natali, E.L. Carniel, P.C. Pavan, C. Bourauel, A. Ziegler, L. Keilig, J. Biomech. 40, 7 (2007)

    Article  Google Scholar 

  • G. Pietrzak, A. Curnier, J. Botsis, S. Scherrer, A. Wiscott, U. Belser, Comput. Method Biomec. 5, 2 (2002)

    Article  Google Scholar 

  • J.J. Pilon, A.M. Kuijpers-Jagtman, J.C. Maltha, Am. J. Orthod. Dentofac. Orthop. 110, 1 (1996)

    Article  Google Scholar 

  • J. Planert, H. Modler, K. Ludecke, M. Eger, Clin. Phys. Physiol. M. 13, 3 (1992)

    Google Scholar 

  • W. Proffit, in Biologic Basis of Orthodontic Therapy. in Contemporary Orthodontics, ed. by W.R. Proffit, H.W. Fields (Mosby, St Louis, 2000)

    Google Scholar 

  • K. Reitan, Angle Orthod. 34, 4 (1964)

    Google Scholar 

  • K. Reitan, A.M.J. Orthod, Dentofac. Orthop. 43, 1 (1957)

    Article  Google Scholar 

  • Y. Ren, J. Maltha, A.M. Kuijpers-Jagtman, Angle Orthod. 73, 1 (2003)

    Google Scholar 

  • S. Rues, B. Panchaphongsaphak, P. Gieschke, O. Paul, B. Lapatki, J. Biomech. 44, 10 (2011)

    Article  Google Scholar 

  • C. Sandstedt, Contributions to the theory of orthodontic tooth movement. Nordisk Tandläkaretidskrift 4 (1904)

  • C. Sandstedt, Contributions to the theory of orthodontic tooth movement. Nordisk Tandläkaretidskrift. 1, 2 (1905)

    Google Scholar 

  • A.M. Schwarz, A.M.J. Orthod, Dentofac. Orthop. 18, 4 (1932)

    Google Scholar 

  • Y. Shi, C. Ren, W. Hao, M. Zhang, Y. Bai, Z. Wang, IEEE Sens. J. 12, 5 (2012)

    Article  Google Scholar 

  • M. Simon, L. Keilig, J. Schwarze, B.A. Jung, C. Bourauel, Am. J. Orthod. Dentofac. Orthop. 145, 6 (2014)

    Article  Google Scholar 

  • R. Smith, C.J. Burstone, Am. J. Orthod. Dentofac. Orthop. 85, 4 (1984)

    Google Scholar 

  • D.J. Solonche, C.J. Burstone, R.A. Vanderby, IEEE T. Bio-med Eng. 24, 6 (1997)

    Google Scholar 

  • J.Y. Tominaga, M. Tanaka, Y. Koga, C. Gonzales, M. Kobayashi, N. Yoshida, Angle Orthod. 79, 4 (2009)

    Google Scholar 

  • E.J. Van Leeuwen, J.C. Maltha, A.M. Kuijpers-Jagtsman Eur, J. Oral Sci. 107 (1999)

  • A.D. Vardimon, D. Robbins, T. Brosh, Am. J. Orthod. Dentofac. Orthop. 138, 4 (2010)

    Article  Google Scholar 

  • F. Weiland, Eur. J. Orthodont. 25, 4 (2003)

    Article  Google Scholar 

  • B. Weltman, K.W. Vig, H.W. Fields, S. Shanker, E.E. Kaizar, Am. J. Orthod. Dentofac. Orthop. 137, 4 (2010)

    Article  Google Scholar 

  • Y. Yoon, W. Jeong, S. Jang, G. Hwang, K. Kim, Angle Orthod. 72, 6 (2002)

    Google Scholar 

  • N. Yoshida, Y. Koga, K. Kobayashi, Y. Yamada, T. Yoneda, Med. Eng. Phys. 22, 4 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Godfried Jansen Van Vuuren, for his advice and support in the fabrication of measurement set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Mencattelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mencattelli, M., Donati, E., Spinelli, P. et al. Measuring 3D-orthodontic actions to guide clinical treatments involving coil springs and miniscrews. Biomed Microdevices 19, 14 (2017). https://doi.org/10.1007/s10544-017-0153-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0153-8

Keywords

Navigation